AttentionFreeTransformer 源码解析(一):AFTFull、AFTSimple、AFTLocal

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: AttentionFreeTransformer 源码解析(一):AFTFull、AFTSimple、AFTLocal

我觉得源码写的很好懂,我就不加注释了,直接上计算流程图。

AFTFull

class AFTFull(nn.Module):
    def __init__(self, max_seqlen, dim, hidden_dim=64):
        super().__init__()
        '''
        max_seqlen: the maximum number of timesteps (sequence length) to be fed in
        dim: the embedding dimension of the tokens
        hidden_dim: the hidden dimension used inside AFT Full
        Number of heads is 1 as done in the paper
        '''
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.to_q = nn.Linear(dim, hidden_dim)
        self.to_k = nn.Linear(dim, hidden_dim)
        self.to_v = nn.Linear(dim, hidden_dim)
        self.project = nn.Linear(hidden_dim, dim)
        self.wbias = nn.Parameter(torch.Tensor(max_seqlen, max_seqlen))
        nn.init.xavier_uniform_(self.wbias)
    def forward(self, x):
        B, T, _ = x.shape
        Q = self.to_q(x).view(B, T, self.hidden_dim)
        K = self.to_k(x).view(B, T, self.hidden_dim)
        V = self.to_v(x).view(B, T, self.hidden_dim)
        temp_wbias = self.wbias[:T, :T].unsqueeze(0) # sequences can still be variable length
        '''
        From the paper
        '''
        Q_sig = torch.sigmoid(Q)
        temp = torch.exp(temp_wbias) @ torch.mul(torch.exp(K), V)
        weighted = temp / (torch.exp(temp_wbias) @ torch.exp(K))
        Yt = torch.mul(Q_sig, weighted)
        Yt = Yt.view(B, T, self.hidden_dim)
        Yt = self.project(Yt)
        return Yt

AFTSimple

class AFTSimple(nn.Module):
    def __init__(self, max_seqlen, dim, hidden_dim=64):
        super().__init__()
        '''
        max_seqlen: the maximum number of timesteps (sequence length) to be fed in
        dim: the embedding dimension of the tokens
        hidden_dim: the hidden dimension used inside AFT Full
        Number of Heads is 1 as done in the paper.
        '''
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.to_q = nn.Linear(dim, hidden_dim)
        self.to_k = nn.Linear(dim, hidden_dim)
        self.to_v = nn.Linear(dim, hidden_dim)
        self.project = nn.Linear(hidden_dim, dim)
    def forward(self, x):
        B, T, _ = x.shape
        Q = self.to_q(x).view(B, T, self.hidden_dim)
        K = self.to_k(x).view(B, T, self.hidden_dim)
        V = self.to_v(x).view(B, T, self.hidden_dim)
        '''
        From the paper
        '''
        weights = torch.mul(torch.softmax(K, 1), V).sum(dim=1, keepdim=True)
        Q_sig = torch.sigmoid(Q)
        Yt = torch.mul(Q_sig, weights)
        Yt = Yt.view(B, T, self.hidden_dim)
        Yt = self.project(Yt)
        return Yt

AFTLocal

class AFTLocal(nn.Module):
    def __init__(self, max_seqlen, dim, hidden_dim=64, s=256):
        super().__init__()
        '''
        max_seqlen: the maximum number of timesteps (sequence length) to be fed in
        dim: the embedding dimension of the tokens
        hidden_dim: the hidden dimension used inside AFT Full
        s: the window size used for AFT-Local in the paper
        Number of heads is 1 as done in the paper
        '''
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.to_q = nn.Linear(dim, hidden_dim)
        self.to_k = nn.Linear(dim, hidden_dim)
        self.to_v = nn.Linear(dim, hidden_dim)
        self.project = nn.Linear(hidden_dim, dim)
        self.wbias = nn.Parameter(torch.Tensor(max_seqlen, max_seqlen))
        self.max_seqlen = max_seqlen
        self.s = s
        nn.init.xavier_uniform_(self.wbias)
    def forward(self, x):
        B, T, _ = x.shape
        Q = self.to_q(x).view(B, T, self.hidden_dim)
        K = self.to_k(x).view(B, T, self.hidden_dim)
        V = self.to_v(x).view(B, T, self.hidden_dim)
        self.wbias = nn.Parameter(torch.Tensor([
            [self.wbias[i][j] if math.fabs(i-j) < self.s else 0 for j in range(self.max_seqlen)] 
            for i in range(self.max_seqlen)
            ]))
        temp_wbias = self.wbias[:T, :T].unsqueeze(0) # sequences can still be variable length
        '''
        From the paper
        '''
        Q_sig = torch.sigmoid(Q)
        temp = torch.exp(temp_wbias) @ torch.mul(torch.exp(K), V)
        weighted = temp / (torch.exp(temp_wbias) @ torch.exp(K))
        Yt = torch.mul(Q_sig, weighted)
        Yt = Yt.view(B, T, self.hidden_dim)
        Yt = self.project(Yt)
        return Yt
相关文章
|
13天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
44 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
70 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
57 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
62 0
|
14天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
26天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
42 3
|
2月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
57 5
|
2月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
120 5
|
2月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
2月前
|
算法 Java 程序员
Map - TreeSet & TreeMap 源码解析
Map - TreeSet & TreeMap 源码解析
34 0

推荐镜像

更多