【Matlab智能算法】PSO优化(单隐层)BP神经网络算法

简介: 【Matlab智能算法】PSO优化(单隐层)BP神经网络算法


1.优化思路

BP神经网络的隐藏节点通常由重复的前向传递和反向传播的方式来决定,通过修改或构造训练方式改隐藏的节点数,相应的初始权重和偏置也会随之变化,从而影响网络的收敛和学习效率。为了减少权重和偏置对模型的影响,采用粒子群算法对BP神经网络模型的权重和偏置进行优化,从而加快网络的收敛速度和提高网络的学习效率。

优化的重点在于如何构造关于模型权重和偏置的目标函数。将PSO(粒子群优化算法)的适应度函数设为预测效果和测试输出的误差绝对值,通过BP神经网络训练得到不同权重和偏置对应的适应度,当寻找的权重和偏置使得适应度最小,即误差最小时,则为最优权值和偏置,再将最优值返回用于构建BP神经网络。

2.测试函数

y = x 1 2 + x 2 2 y = x_1^2+x_2^2y=x12+x22

要求:拟合未知模型(预测)。

条件:已知模型的一些输入输出数据。

已知一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end

3.完整代码

data.m

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';
save data input output

PSO_BP_fun.m

function error = PSO_BP_fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));

PSO_BP.m

%% 清空环境
clc
tic
%读取数据
load data input output
%节点个数
inputnum=2;
hiddennum=4;
outputnum=1;
opnum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
% 需要优化的参数个数
%% 训练数据预测数据提取及归一化
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen=100;   % 进化次数  
sizepop=30;   %种群规模
%个体和速度最大最小值
Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;
for i=1:sizepop
    pop(i,:)=5*rands(1,opnum);
    V(i,:)=rands(1,opnum);
    fitness(i)=PSO_BP_fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end
% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
    i;
    for j=1:sizepop
        %速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        %种群更新
        pop(j,:)=pop(j,:)+0.2*V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
        %自适应变异
        pos=unidrnd(opnum);
        if rand>0.95
            pop(j,pos)=5*rands(1,1);
        end
        %适应度值
        fitness(j)=PSO_BP_fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
    end
    for j=1:sizepop
    %个体最优更新
    if fitness(j) < fitnessgbest(j)
        gbest(j,:) = pop(j,:);
        fitnessgbest(j) = fitness(j);
    end
    %群体最优更新 
    if fitness(j) < fitnesszbest
        zbest = pop(j,:);
        fitnesszbest = fitness(j);
    end
    end
    yy(i)=fitnesszbest;    
end
%% PSO结果分析
plot(yy)
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
x=zbest;
%% 把最优初始阈值权值赋予网络预测
% %用PSO优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% PSO-BP网络训练
%网络进化参数
net.trainParam.epochs=120;
net.trainParam.lr=0.005;
net.trainParam.goal=4e-8;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% PSO-BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
inputn_train=mapminmax('apply',input_train,inputps);
an=sim(net,inputn_test);
an1=sim(net,inputn_train);
test_PSOBP=mapminmax('reverse',an,outputps);
train_PSOBP=mapminmax('reverse',an1,outputps);
%% PSO-BP误差
error_PSOBP=test_PSOBP-output_test;
disp('PSO-BP results:');
errorsum_PSOBP=sum(abs(error_PSOBP))
figure(1);
plot(test_PSOBP,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10.8);
title('PSO-BP network output','fontsize',12);
xlabel("samples",'fontsize',12);
figure(2);
plot(error_PSOBP,'-*');
title('PSO-BP Neural network prediction error');
xlabel("samples",'fontsize',12);
figure(3);
plot(100*(output_test-test_PSOBP)./output_test,'-*');
title('PSO-BP Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);
figure(4);
plot(100*(output_train-train_PSOBP)./output_train,'-*');
title('PSO-BP Neural network training error percentage (%)');
xlabel("samples",'fontsize',12);
toc

4.运行效果

hiddennum = 4:

输出:

PSO-BP results:
errorsum_PSOBP =
    1.2443
历时 109.578562 秒。

hiddennum = 5:

输出:

PSO-BP results:
errorsum_PSOBP =
    0.3804
历时 303.508080 秒。

资源下载

下载链接

相关文章
|
11月前
|
机器学习/深度学习 算法
单隐层神经网络在Matlab上实现及其简单应用
单隐层神经网络在Matlab上实现及其简单应用
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
17天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
34 1
|
2天前
|
安全 物联网 Linux
学习Linux对网络安全的重要性
**学习Linux对网络安全至关重要:** 1. 开源操作系统广泛应用于服务器、网络设备,掌握Linux是安全专家必备技能。 2. Linux内置安全特性,如最小权限和防火墙,加上丰富的安全工具,提供强大保障。 3. 可定制性允许灵活配置,满足安全需求,开源社区提供持续更新和教育资源。 4. 学习Linux能提升攻防能力,用于系统加固和渗透测试,适应跨平台安全场景。 5. 随着云计算和物联网发展,Linux在网络安全中的角色日益关键。
12 3
|
19天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav
|
20天前
|
监控 网络协议 Ubuntu
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
45 1
|
18天前
|
负载均衡 Ubuntu Linux
Linux命令探秘:bond2team与网络绑定技术
Linux的`bond2team`是网络绑定和团队技术工具,用于组合多个网络接口以提升带宽、容错性和负载均衡。通过安装`ifenslave-2.6`,在`/etc/sysconfig/network-scripts/`或`/etc/network/interfaces`配置文件中设定接口绑定模式,如`activebackup`。它支持负载均衡、容错和热备等多种工作模式,确保网络高可用性和性能。在配置前务必备份,并重启服务使配置生效。
|
1月前
|
网络协议 Linux 网络架构

热门文章

最新文章