软件测试/测试开发全日制|Pyest结合json实现数据驱动测试

简介: 软件测试/测试开发全日制|Pyest结合json实现数据驱动测试

前言

数据驱动测试是提高代码覆盖率和可靠性的重要方法。结合pytest和JSON(JavaScript对象表示)文件可以轻松实现数据驱动测试。和CSV文件类似,Python读取json文件也不需要借助其他的第三方库,因此我们不需要进行额外的环境安装。下面是如何使用pytest和JSON文件进行数据驱动测试的步骤。

创建测试文件和JSON文件

假设我们有一个简单的函数需要测试,比如对两个数进行求和:

# code.py

def add(a, b):
    return a + b

接下来,创建一个JSON文件,用于存储测试数据:

[
  {
   
    "test_case": "Case 1",
    "operand_a": 2,
    "operand_b": 3,
    "expected_result": 5
  },
  {
   
    "test_case": "Case 2",
    "operand_a": -1,
    "operand_b": 10,
    "expected_result": 9
  },
  {
   
    "test_case": "Case 3",
    "operand_a": 0,
    "operand_b": 0,
    "expected_result": 0
  }
]

编写测试用例

创建一个pytest测试文件,编写测试用例并读取JSON文件中的数据:

# test_code.py

import json
import pytest
from code import add

def load_test_data():
    with open('test_data.json', 'r') as file:
        test_data = json.load(file)
    return test_data

@pytest.mark.parametrize("data", load_test_data())
def test_add(data):
    operand_a = data['operand_a']
    operand_b = data['operand_b']
    expected_result = data['expected_result']

    result = add(operand_a, operand_b)
    assert result == expected_result, f"{operand_a} + {operand_b} 应该得到 {expected_result},实际得到 {result}"

运行测试

现在,运行pytest命令来执行测试:

pytest test_code.py

pytest将会读取test_code.py文件中的测试用例,并根据JSON文件中提供的数据对add函数进行测试。每个测试用例都会使用JSON文件中的数据进行数据驱动测试。

总结

结合pytest和JSON文件,我们成功实现了数据驱动测试,对同一个函数在不同输入下进行了多组测试。这种方法使得测试用例易于管理和维护,同时能够更全面地覆盖不同的测试场景,确保代码的稳定性和正确性。数据驱动测试的优势在于能够快速扩展测试数据,提高测试的覆盖率和可靠性。

相关文章
|
17天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
9天前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
2天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
20 12
|
26天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
233 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
23天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
34 11
|
25天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
49 10
|
1月前
|
JSON API 数据格式
淘系等商品评论Json数据格式参考,API接口测试
通过以上示例和说明,你可以了解淘系商品评论的JSON数据结构和如何使用相关API接口获取评论数据。在实际操作中,你需要参考具体的API接口文档和开放平台的相关说明进行配置和调用。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
50 6
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
40 1

热门文章

最新文章