软件测试/测试开发全日制|Pytest结合yaml实现数据驱动

简介: 软件测试/测试开发全日制|Pytest结合yaml实现数据驱动

前言

我们之前介绍过pytest的参数化,我们使用了@pytest.mark.parametrize(argnames, argvalues)来实现批量传送参数的目的,但是我们不进行数据驱动的话,我们一旦对数据进行变更,就需要在代码里对我们的参数进行逐一的修改,这对我们来说,是额外增加的工作量,而通过专门存储数据的文件来实现数据驱动,就可以节省我们的工作量,改变参数时,我们只需要对数据文件进行修改,在数据驱动测试中,yaml文件是我们最常使用的数据驱动文件之一,本文就给大家介绍一下pytest结合yaml实现数据驱动。

环境安装

我们在使用yaml之前,需要先安装好yaml的第三方库,命令如下:

pip install PyYAML

创建测试文件和数据文件

假设我们要测试一个简单的函数,比如计算两个数的和:

# code.py

def add(a, b):
    return a + b

接下来,创建一个yaml文件,用于存储测试数据:

# test_data.yaml
test_case_1:
  a: 2
  b: 3
  expected_result: 5

test_case_2:
  a: -1
  b: 10
  expected_result: 9

test_case_3:
  a: 0
  b: 0
  expected_result: 0

编写测试用例

现在,创建一个pytest测试文件,编写测试用例并读取yaml文件中的数据:

# test_code.py

import yaml
import pytest
from code import add

def load_test_data():
    with open('test_data.yaml', 'r') as file:
        test_data = yaml.safe_load(file)
    return test_data

@pytest.mark.parametrize("input_data", load_test_data().values())
def test_add(input_data):
    a = input_data['a']
    b = input_data['b']
    expected_result = input_data['expected_result']

    result = add(a, b)
    assert result == expected_result, f"计算错误:{a} + {b} 应该得到 {expected_result},实际得到 {result}"

运行测试

我们接下来可以运行测试,直接在pycharm中点击绿色三角形运行即可,我们也可以使用命令行运行,命令如下:

pytest test_code.py

pytest将会读取test_code.py文件中的测试用例,并根据test_data.yaml中提供的数据对add函数进行测试。每个测试用例都会使用yaml文件中的数据来进行数据驱动测试。

总结

结合pytestyaml,我们实现了数据驱动测试,有效地测试了同一个函数在不同输入下的行为。这种方法使得测试用例易于维护,并且可以轻松地添加更多的测试数据,确保代码的稳定性和正确性。

相关文章
|
2月前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
153 11
|
2月前
|
测试技术 持续交付
探索软件测试中的自动化测试策略
随着软件开发周期的加速和市场需求的不断增长,传统的手动软件测试方法已难以满足现代软件开发的高效性和准确性要求。本文旨在探讨自动化测试在软件测试中的重要性、实施策略及其对提高软件质量的影响。通过分析自动化测试的优势与挑战,以及提供实用的自动化测试工具和框架选择指南,旨在帮助读者理解并应用自动化测试以提升软件开发效率和产品质量。
|
2月前
|
机器学习/深度学习 人工智能 监控
软件测试中的自动化测试策略与最佳实践##
在当今快速发展的软件行业中,自动化测试已成为确保软件质量和加速产品上市的关键工具。本文将探讨自动化测试的重要性,分析不同类型的自动化测试工具和框架,并深入讨论实施自动化测试的最佳实践。通过案例研究和数据分析,我们将揭示如何有效整合自动化测试到软件开发生命周期中,以及它如何帮助团队提高测试效率和覆盖率。 ##
85 1
|
1月前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
1月前
|
存储 测试技术 API
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
109 15
|
2月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
38 11
|
2月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
55 10
|
2月前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
2月前
|
数据管理 测试技术 持续交付
软件测试中的自动化测试策略与最佳实践
在当今快速迭代的软件开发环境中,自动化测试已成为确保软件质量和加速产品上市的关键手段。本文旨在探讨软件测试中的自动化测试策略,包括选择合适的自动化测试工具、构建有效的自动化测试框架以及实施持续集成和持续部署(CI/CD)。通过分析自动化测试的最佳实践,本文为软件开发团队提供了一系列实用的指南,以优化测试流程、提高测试效率并减少人为错误。
92 4
|
2月前
|
监控 测试技术 定位技术
探索软件测试中的自动化测试框架选择与实施###
本文不概述传统意义上的摘要内容,而是直接以一段对话形式引入,旨在激发读者兴趣。想象一下,你是一名勇敢的探险家,面前摆满了各式各样的自动化测试工具地图,每张地图都指向未知的宝藏——高效、精准的软件测试领域。我们将一起踏上这段旅程,探讨如何根据项目特性选择合适的自动化测试框架,并分享实施过程中的关键步骤与避坑指南。 ###
63 4

热门文章

最新文章