【AI绘画】Stable Diffusion 客户端搭建

简介: 【AI绘画】Stable Diffusion 客户端搭建

一、环境准备

  1. 自行准备git环境。
  2. 自行准备python3.10.6环境。

PS:以上环境比较基础,但如果不知道怎么配置,也可以问我。

二、下载git仓库

D:\v4_workspace_ai>git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git sd_20231008
Cloning into 'sd_20231008'...
remote: Enumerating objects: 27619, done.
remote: Total 27619 (delta 0), reused 0 (delta 0), pack-reused 27619
Receiving objects: 100% (27619/27619), 32.36 MiB | 207.00 KiB/s, done.
Resolving deltas: 100% (19332/19332), done.

image.png

三、启动

  1. 执行启动脚本webui-user.bat(切记:不要修改脚本内的任何内容)
D:\v4_workspace_ai\sd_20231008>webui-user.bat
venv "D:\v4_workspace_ai\sd_20231008\venv\Scripts\Python.exe"
Python 3.10.9 (tags/v3.10.9:1dd9be6, Dec  6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)]
Version: v1.6.0
Commit hash: 5ef669de080814067961f28357256e8fe27544f4
Installing torch and torchvision
Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118
Collecting torch==2.0.1
  Downloading https://download.pytorch.org/whl/cu118/torch-2.0.1%2Bcu118-cp310-cp310-win_amd64.whl (2619.1 MB)
     ━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.4/2.6 GB 11.7 MB/s eta 0:03:09

image.png

  1. 启动完成

image.png

  • 可以看到第一次启动累计花了1443,大概24分钟(主要是下载的文件有点大)。

四、安装几个重要的插件

五、开始使用

image.png

  • 哈哈,很酷的男冷。
目录
相关文章
|
2月前
|
人工智能 Serverless
AI助理精准匹配------助力快速搭建Stable Difussion图像生成应用
【10月更文挑战第7天】过去在阿里云社区搭建Stable Diffusion图像生成应用需查阅在线实验室或官方文档,耗时且不便。现阿里云AI助理提供精准匹配服务,直接在首页询问AI助理即可获取详细部署步骤,简化了操作流程,提高了效率。用户可按AI助理提供的步骤快速完成应用创建、参数设置、应用部署及资源释放等操作,轻松体验Stable Diffusion图像生成功能。
|
2月前
|
人工智能 Serverless
AI助理精准匹配,为您推荐方案——如何添加一个Stable Difussion图像生成应用
介绍了一种利用AI助手快速获取并搭建Stable Diffusion图像生成应用的方法。用户只需在阿里云官网向AI助手提出需求,即可获得详细的实施方案。随后,按照AI助手提供的方案,通过函数计算部署应用,并进行测试。此过程显著提升了开发效率。
804 2
AI助理精准匹配,为您推荐方案——如何添加一个Stable Difussion图像生成应用
|
2月前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
3月前
|
人工智能
在stable diffussion中完美修复AI图片
无论您的提示和模型有多好,一次性获得完美图像的情况很少见。修复小缺陷的不可或缺的方法是图像修复(inpainting)
在stable diffussion中完美修复AI图片
|
3月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
73 7
|
3月前
|
人工智能 自然语言处理 计算机视觉
比Stable Diffusion便宜118倍!1890美元训出11.6亿参数高质量文生图模型
【9月更文挑战第6天】最近,一篇论文在AI领域引起广泛关注,展示了如何以极低成本训练高质量文本生成图像(T2I)模型。研究者通过随机遮蔽图像中75%的patch并采用延迟遮蔽策略,大幅降低计算成本,同时结合Mixture-of-Experts(MoE)层提升性能。最终,他们仅用1890美元就训练出了一个拥有11.6亿参数的模型,在COCO数据集上取得12.7的FID分数。这一成果比Stable Diffusion成本低118倍,为资源有限的研究人员提供了新途径。尽管如此,该方法在其他数据集上的表现及进一步降低成本的可行性仍需验证。
57 1
|
6月前
|
机器学习/深度学习 人工智能 算法
Stable Diffusion AI绘画
Stable Diffusion是人工智能领域的文本到图像生成模型,基于概率的连续扩散过程,学习数据潜在分布并生成新样本。模型使用Web UI进行交互,提供不同采样器如Euler和DPM++,后者常配以Karras算法。提示词对生成效果至关重要,可以利用GPT等生成提示词。用户还能调整参数如高清修复和批处理次数来影响生成的图像。此外,模型文件(ckpt/safetensors)和Lora微调模型需存放在正确目录以确保功能正常。
|
5月前
|
人工智能
AI绘画,Stable Diffusion如何使用中文简体包,黑色页面切换参数http://127.0.0.1:7860/?__theme=dark 两个__,中文包下载和安装
AI绘画,Stable Diffusion如何使用中文简体包,黑色页面切换参数http://127.0.0.1:7860/?__theme=dark 两个__,中文包下载和安装
|
5月前
|
人工智能
AI绘画---Stable Diffusion checkpoint 插件无法安装,中文包无法下载怎么办?这里该如何解决,扩展无法出现
AI绘画---Stable Diffusion checkpoint 插件无法安装,中文包无法下载怎么办?这里该如何解决,扩展无法出现
|
7月前
|
机器学习/深度学习 自然语言处理
文生图模型-Stable Diffusion | AIGC
所谓的生成式模型就是通过文本或者随机采样的方式来得到一张图或者一段话的模型,比如文生图,顾名思义通过文本描述来生成图像的过程。当前流行的文生图模型,如DALE-2, midjourney以及今天要介绍的Stable Diffusion,这3种都是基于Diffusion扩散模型【1月更文挑战第6天】
850 0