零基础入门语义分割-地表建筑物识别 Task6 模型集成-学习笔记

简介: 零基础入门语义分割-地表建筑物识别 Task6 模型集成-学习笔记

学习内容链接

在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。

6 模型集成

本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。

6.1 学习目标

  • 学习集成学习方法以及交叉验证情况下的模型集成
  • 学会使用深度学习模型的集成学习

6.2 集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。

由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。

下面假设构建了10折交叉验证,训练得到10个语义分割模型。

那么在10个CNN模型可以使用如下方式进行集成:

  • 对预测的结果的概率值进行平均,然后解码为具体字符;
  • 对预测的字符进行投票,得到最终字符;

6.3 深度学习中的集成学习

此外在深度学习中本身还有一些集成学习思路的做法,值得借鉴学习:

6.3.1 Dropout

Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。

Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。

6.3.2 TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。

for idx, name in enumerate(tqdm_notebook(glob.glob('./test_mask/*.png')[:])):
    image = cv2.imread(name)
    image = trfm(image)
    with torch.no_grad():
        image = image.to(DEVICE)[None]
        score1 = model(image).cpu().numpy()
        score2 = model(torch.flip(image, [0, 3]))
        score2 = torch.flip(score2, [3, 0]).cpu().numpy()
        score3 = model(torch.flip(image, [0, 2]))
        score3 = torch.flip(score3, [2, 0]).cpu().numpy()
        score = (score1 + score2 + score3) / 3.0
        score_sigmoid = score[0].argmax(0) + 1
6.3.3 Snapshot

本章的开头已经提到,假设我们训练了10个CNN则可以将多个模型的预测结果进行平均。但是加入只训练了一个CNN模型,如何做模型集成呢?

在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。

由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。

6.4 本章小节

在本章中我们讲解了深度学习模型做集成学习的各种方法,并以此次赛题为例讲解了部分代码。以下几点需要同学们注意

  • 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成学习过程;
  • 具体的集成学习方法需要与验证集划分方法结合,Dropout和TTA在所有场景有可以起作用。

6.5 课后作业

  • 使用交叉验证训练模型,得到多个模型权重;
  • 学习Snapshot和TTA的具体用法;
相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】集成语音与大型语音模型等安全边界探索
【机器学习】集成语音与大型语音模型等安全边界探索
150 5
|
13天前
|
存储 缓存 安全
LLM应用实战:当图谱问答(KBQA)集成大模型(三)
本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。
253 1
|
5天前
|
机器学习/深度学习 算法 大数据
【机器学习】集成学习:强化机器学习模型与创新能的利器
【机器学习】集成学习:强化机器学习模型与创新能的利器
7 0
|
1月前
|
传感器 数据采集 数据处理
MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化
MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化
|
1月前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
|
1月前
|
机器学习/深度学习 数据采集 算法
ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
基于混沌集成决策树的电能质量复合扰动识别(matlab代码)
基于混沌集成决策树的电能质量复合扰动识别(matlab代码)
|
1月前
|
机器学习/深度学习 算法 数据挖掘
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
|
1月前
|
机器学习/深度学习
R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
|
1月前
|
算法 数据可视化
R语言ARIMA集成模型预测时间序列分析
R语言ARIMA集成模型预测时间序列分析

热门文章

最新文章