红黑树
一、背景
我们知道二叉搜索树(BST),在极端情况下,会退化为单支树,查找效率从 O(log2n) 退化为 O(n)。主要原因就是BST不够平衡(左右子树高度差太大)。既然如此,那么我们就需要通过一定的算法,将不平衡树改变成平衡树。因此,AVL树就诞生了。AVL要求左右子树的高度差不能超过1,是严格平衡的二叉搜索树,为了维持这种严格平衡,每次插入和删除的时候都需要旋转操作。在频繁插入、删除的场景下,AVL的性能会大打折扣。红黑树通过牺牲严格的平衡性质,换取减少每次插入和删除的旋转操作。
二、概述
红黑树是一种自平衡的二叉搜索树。不论哪种搜索树,通过中序遍历,结果就是有序的。
红黑树五大性质:
- 每个节点是红色或者黑色
- 根节点是黑色的
- 叶子节点是黑的
- 如果一个节点是红的,那么该节点的两个儿子都是黑的
- 每个节点,到叶子所有路径上的黑色节点个数相同。
三、红黑树代码实现
旋转:红黑树在插入或删除节点时,上面的性质可能会被破坏, 旋转操作就是为了使变化后的红黑树继续满足上面的性质。旋转操作分为左旋和右旋,旋转的本质,实际上是修改若干指针的指向。
左旋代码实现:
void rbtree_left_rotate(rbtree *T, rbtree_node *x) { rbtree_node *y = x->right; // 获取x的右子树,保存到y x->right = y->left; // x的右子树指向y的左子树; //如果y的左子树不是叶子结点,需要改变y的左子树的父节点到x if (y->left != T->nil) { y->left->parent = x; } y->parent = x->parent; // y的父节点指向x的父节点; // 此时需要判断x,x如果是根节点,则x的父节点为NULL,则需要让根节点指向此时的y; // 如果不是,则需要判断x是它父节点的左子树还是右子树, // 如果是左子树,就让父节点的左子树指向y,如果是右子树就让父节点的左=右子树指向y。 if (x->parent == T->nil) { T->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; // y的左子树指向x x->parent = y; // x的父节点指向y }
右旋代码实现:只需要将左旋代码中的 x和y互换位置,left换成right,right换成left。
void rbtree_right_rotate(rbtree *T, rbtree_node *y) { rbtree_node *x = y->left; y->left = x->right; if (x->right != T->nil) { x->right->parent = y; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->right) { y->parent->right = x; } else { y->parent->left = x; } x->right = y; y->parent = x; }
插入:每次插入都会插入到红黑树的最底层。并且上色为红色,因为红色不会影响第五条性质。插入完再继续进行调整(这里主要看自己与父节点是否为红色,如果是红色,迭代向上进行调整,如果是黑色就不用调整)。循环的中止条件就是遍历到叶子结点。如果插入的节点已经存在,也就是相等。取决于业务场景。比如定时任务,定时时间相同,可以稍稍修改一丢丢值。
始终需要扣住的点:红黑树不论是在什么时候,都是一棵红黑树,也就是说满足红黑树的性质。听起来像是废话,需要慢慢体会!
3.1 插入节点实现
红黑树插入节点z代码实现(看代码的时候结合着图看,会比较好理解一点):
思考:假设插入节点z为红色,其父节点也为红色,那么z的祖父节点一定是黑色的!(红黑树性质决定),z的叔父节点的颜色就不确定了,需要分情况讨论:
- 要插入节点的父节点是祖父节点的左子树
a) 叔父节点是红色的情况:
b) 叔父节点是黑色的情况:
这种情况下,需要考虑要插入的节点是其父节点的左孩子还是右孩子。
b.1) 要插入的节点是其父节点的右孩子
b.2) 要插入的节点是其父节点的左孩子 - 要插入节点的父节点是祖父节点的右子树(对照左子树情况理解就好)
void rbtree_insert_fixup(rbtree *T, rbtree_node *z) { while (z->parent->color == RED) // 只要当前z与其父节点的颜色都是红的就进行调整 { if (z->parent == z->parent->parent->left) // 要插入节点的父节点是祖父节点的左子树 { rbtree_node *y = z->parent->parent->right; // 拿到祖父节点的右节点,也就是叔父节点 if (y->color == RED) // 叔父节点的颜色是红色 { z->parent->color = BLACK; // 将插入节点z的父节点染成黑色 y->color = BLACK; // 将插入节点z的叔父节点染成黑色 z->parent->parent->color = RED; // 将插入节点z的祖父节点染成红色 z = z->parent->parent; // 更新z节点为它的祖父节点,再次进行判断 } else // 叔父节点的颜色是黑色 { if (z == z->parent->right) // 当前插入节点z是其父节点的右孩子 { z = z->parent; rbtree_left_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_right_rotate(T, z->parent->parent); } } else // 要插入节点的父节点是祖父节点的右子树 { rbtree_node *y = z->parent->parent->left; // 拿到叔父节点 if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->left) { z = z->parent; rbtree_right_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_left_rotate(T, z->parent->parent); } } } T->root->color = BLACK; } void rbtree_insert(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->root; // 从根节点开始遍历 while (x != T->nil) // 遍历找插入位置,循环到叶子节点终止 { y = x; // 保存x的上一级节点 if (z->key < x->key) { x = x->left; } else if (z->key > x->key) { x = x->right; } else { //Exist return ; } } // 循环退出,找到插入位置,让待插入节点的父指针指向y(注意通过上述循环,x就是待插入的位置) z->parent = y; if (y == T->nil) { // 当前红黑树为空 T->root = z; } else if (z->key < y->key) { // 当前红黑树不为空,需要判断是到y的左孩子还是右孩子 y->left = z; } else { y->right = z; } // 因为每次插入,一定是插入到最后一行,所以需要让z节点的左右孩子都指向空 z->left = T->nil; z->right = T->nil; z->color = RED; // 染成红色 rbtree_insert_fixup(T, z); // 迭代调整 }
3.2 删除及查找节点实现
void rbtree_delete_fixup(rbtree *T, rbtree_node *x) { while ((x != T->root) && (x->color == BLACK)) { if (x == x->parent->left) { rbtree_node *w= x->parent->right; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_left_rotate(T, x->parent); w = x->parent->right; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->right->color == BLACK) { w->left->color = BLACK; w->color = RED; rbtree_right_rotate(T, w); w = x->parent->right; } w->color = x->parent->color; x->parent->color = BLACK; w->right->color = BLACK; rbtree_left_rotate(T, x->parent); x = T->root; } } else { rbtree_node *w = x->parent->left; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_right_rotate(T, x->parent); w = x->parent->left; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->left->color == BLACK) { w->right->color = BLACK; w->color = RED; rbtree_left_rotate(T, w); w = x->parent->left; } w->color = x->parent->color; x->parent->color = BLACK; w->left->color = BLACK; rbtree_right_rotate(T, x->parent); x = T->root; } } } x->color = BLACK; } rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->nil; if ((z->left == T->nil) || (z->right == T->nil)) { y = z; } else { y = rbtree_successor(T, z); } if (y->left != T->nil) { x = y->left; } else if (y->right != T->nil) { x = y->right; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->left) { y->parent->left = x; } else { y->parent->right = x; } if (y != z) { z->key = y->key; z->value = y->value; } if (y->color == BLACK) { rbtree_delete_fixup(T, x); } return y; } rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) { rbtree_node *node = T->root; while (node != T->nil) { if (key < node->key) { node = node->left; } else if (key > node->key) { node = node->right; } else { return node; } } return T->nil; } void rbtree_traversal(rbtree *T, rbtree_node *node) { if (node != T->nil) { rbtree_traversal(T, node->left); printf("key:%d, color:%d\n", node->key, node->color); rbtree_traversal(T, node->right); } }
五、完整代码
#include <stdio.h> #include <stdlib.h> #include <string.h> #define RED 1 #define BLACK 2 typedef int KEY_TYPE; typedef struct _rbtree_node { unsigned char color; struct _rbtree_node *right; struct _rbtree_node *left; struct _rbtree_node *parent; KEY_TYPE key; void *value; } rbtree_node; typedef struct _rbtree { rbtree_node *root; rbtree_node *nil; } rbtree; rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) { while (x->left != T->nil) { x = x->left; } return x; } rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) { while (x->right != T->nil) { x = x->right; } return x; } rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) { rbtree_node *y = x->parent; if (x->right != T->nil) { return rbtree_mini(T, x->right); } while ((y != T->nil) && (x == y->right)) { x = y; y = y->parent; } return y; } void rbtree_left_rotate(rbtree *T, rbtree_node *x) { rbtree_node *y = x->right; // x --> y , y --> x, right --> left, left --> right x->right = y->left; //1 1 if (y->left != T->nil) { //1 2 y->left->parent = x; } y->parent = x->parent; //1 3 if (x->parent == T->nil) { //1 4 T->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; //1 5 x->parent = y; //1 6 } void rbtree_right_rotate(rbtree *T, rbtree_node *y) { rbtree_node *x = y->left; y->left = x->right; if (x->right != T->nil) { x->right->parent = y; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->right) { y->parent->right = x; } else { y->parent->left = x; } x->right = y; y->parent = x; } void rbtree_insert_fixup(rbtree *T, rbtree_node *z) { while (z->parent->color == RED) { //z ---> RED if (z->parent == z->parent->parent->left) { rbtree_node *y = z->parent->parent->right; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->right) { z = z->parent; rbtree_left_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_right_rotate(T, z->parent->parent); } }else { rbtree_node *y = z->parent->parent->left; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->left) { z = z->parent; rbtree_right_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_left_rotate(T, z->parent->parent); } } } T->root->color = BLACK; } void rbtree_insert(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->root; while (x != T->nil) { y = x; if (z->key < x->key) { x = x->left; } else if (z->key > x->key) { x = x->right; } else { //Exist return ; } } z->parent = y; if (y == T->nil) { T->root = z; } else if (z->key < y->key) { y->left = z; } else { y->right = z; } z->left = T->nil; z->right = T->nil; z->color = RED; rbtree_insert_fixup(T, z); } void rbtree_delete_fixup(rbtree *T, rbtree_node *x) { while ((x != T->root) && (x->color == BLACK)) { if (x == x->parent->left) { rbtree_node *w= x->parent->right; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_left_rotate(T, x->parent); w = x->parent->right; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->right->color == BLACK) { w->left->color = BLACK; w->color = RED; rbtree_right_rotate(T, w); w = x->parent->right; } w->color = x->parent->color; x->parent->color = BLACK; w->right->color = BLACK; rbtree_left_rotate(T, x->parent); x = T->root; } } else { rbtree_node *w = x->parent->left; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_right_rotate(T, x->parent); w = x->parent->left; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->left->color == BLACK) { w->right->color = BLACK; w->color = RED; rbtree_left_rotate(T, w); w = x->parent->left; } w->color = x->parent->color; x->parent->color = BLACK; w->left->color = BLACK; rbtree_right_rotate(T, x->parent); x = T->root; } } } x->color = BLACK; } rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->nil; if ((z->left == T->nil) || (z->right == T->nil)) { y = z; } else { y = rbtree_successor(T, z); } if (y->left != T->nil) { x = y->left; } else if (y->right != T->nil) { x = y->right; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->left) { y->parent->left = x; } else { y->parent->right = x; } if (y != z) { z->key = y->key; z->value = y->value; } if (y->color == BLACK) { rbtree_delete_fixup(T, x); } return y; } rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) { rbtree_node *node = T->root; while (node != T->nil) { if (key < node->key) { node = node->left; } else if (key > node->key) { node = node->right; } else { return node; } } return T->nil; } void rbtree_traversal(rbtree *T, rbtree_node *node) { if (node != T->nil) { rbtree_traversal(T, node->left); printf("key:%d, color:%d\n", node->key, node->color); rbtree_traversal(T, node->right); } } int main() { int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15}; rbtree *T = (rbtree *)malloc(sizeof(rbtree)); if (T == NULL) { printf("malloc failed\n"); return -1; } T->nil = (rbtree_node*)malloc(sizeof(rbtree_node)); T->nil->color = BLACK; T->root = T->nil; rbtree_node *node = T->nil; int i = 0; for (i = 0;i < 20;i ++) { node = (rbtree_node*)malloc(sizeof(rbtree_node)); node->key = keyArray[i]; node->value = NULL; rbtree_insert(T, node); } rbtree_traversal(T, T->root); printf("----------------------------------------\n"); for (i = 0;i < 20;i ++) { rbtree_node *node = rbtree_search(T, keyArray[i]); rbtree_node *cur = rbtree_delete(T, node); free(cur); rbtree_traversal(T, T->root); printf("----------------------------------------\n"); } }
文章参考与<零声教育>的C/C++linux服务期高级架构线上课学习。有兴趣的同学可以了解下哦。