如果面试也能这样说HashMap,那么就不会有那么多遗憾!(下)

简介: 如果面试也能这样说HashMap,那么就不会有那么多遗憾!

如果面试也能这样说HashMap,那么就不会有那么多遗憾!(中):https://developer.aliyun.com/article/1413689


4.3.2将链表转换为红黑树的treeifyBin方法


节点添加完成之后判断此时节点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树,转换红黑树的方法 treeifyBin,整体代码如下:

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
   //转换为红黑树 tab表示数组名  hash表示哈希值
   treeifyBin(tab, hash);

treeifyBin方法如下所示:

 /**
   * Replaces all linked nodes in bin at index for given hash unless
   * table is too small, in which case resizes instead.
     替换指定哈希表的索引处桶中的所有链接节点,除非表太小,否则将修改大小。
     Node<K,V>[] tab = tab 数组名
     int hash = hash表示哈希值
  */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        /*
          如果当前数组为空或者数组的长度小于进行树形化的阈值(MIN_TREEIFY_CAPACITY = 64),
          就去扩容。而不是将节点变为红黑树。
          目的:如果数组很小,那么转换红黑树,然后遍历效率要低一些。这时进行扩容,那么重新计算哈希值
          ,链表长度有可能就变短了,数据会放到数组中,这样相对来说效率高一些。
        */
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            //扩容方法
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            /*
              1)执行到这里说明哈希表中的数组长度大于阈值64,开始进行树形化
              2)e = tab[index = (n - 1) & hash]表示将数组中的元素取出赋值给e,e是哈希表中指定位          置桶里的链表节点,从第一个开始
            */
            //hd:红黑树的头结点   tl :红黑树的尾结点
            TreeNode<K,V> hd = null, tl = null;
            do {
                //新创建一个树的节点,内容和当前链表节点e一致
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    //将新创键的p节点赋值给红黑树的头结点
                    hd = p;
                else {
                    /*
                       p.prev = tl:将上一个节点p赋值给现在的p的前一个节点
                       tl.next = p;将现在节点p作为树的尾结点的下一个节点
                    */
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
                /*
                  e = e.next 将当前节点的下一个节点赋值给e,如果下一个节点不等于null
                  则回到上面继续取出链表中节点转换为红黑树
                */
            } while ((e = e.next) != null);
            /*
              让桶中的第一个元素即数组中的元素指向新建的红黑树的节点,以后这个桶里的元素就是红黑树
              而不是链表数据结构了
            */
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

小结:上述操作一共做了如下几件事:


1.根据哈希表中元素个数确定是扩容还是树形化


2.如果是树形化遍历桶中的元素,创建相同个数的树形节点,复制内容,建立起联系


3.然后让桶中的第一个元素指向新创建的树根节点,替换桶的链表内容为树形化内容


4.3.3扩容方法_resize


4.3.3.1扩容机制


想要了解HashMap的扩容机制你要有这两个问题


  • 1.什么时候才需要扩容
  • 2.HashMap的扩容是什么


1.什么时候才需要扩容


当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。


补充:


当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,节点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的节点个数低于6,也会再把树转换为链表。


2.HashMap的扩容是什么


进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。


HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。


怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:

因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化:

说明:5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。


因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:

正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,在resize的过程中保证了rehash之后每个桶上的节点数一定小于等于原来桶上的节点数,保证了rehash之后不会出现更严重的hash冲突,均匀的把之前的冲突的节点分散到新的桶中了。


4.3.3.2源码resize方法的解读


下面是代码的具体实现:

final Node<K,V>[] resize() {
    //得到当前数组
    Node<K,V>[] oldTab = table;
    //如果当前数组等于null长度返回0,否则返回当前数组的长度
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //当前阀值点 默认是12(16*0.75)
    int oldThr = threshold;
    int newCap, newThr = 0;
    //如果老的数组长度大于0
    //开始计算扩容后的大小
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            //修改阈值为int的最大值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        /*
          没超过最大值,就扩充为原来的2倍
          1)(newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
          2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
        */
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //阈值扩大一倍
            newThr = oldThr << 1; // double threshold
    }
    //老阈值点大于0 直接赋值
    else if (oldThr > 0) // 老阈值赋值给新的数组长度
        newCap = oldThr;
    else {// 直接使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;//16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize最大上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    //新的阀值 默认原来是12 乘以2之后变为24
    threshold = newThr;
    //创建新的哈希表
    @SuppressWarnings({"rawtypes","unchecked"})
    //newCap是新的数组长度--》32
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    //判断旧数组是否等于空
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        //遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //原来的数据赋值为null 便于GC回收
                oldTab[j] = null;
                //判断数组是否有下一个引用
                if (e.next == null)
                    //没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是红黑树
                else if (e instanceof TreeNode)
                    //说明是红黑树来处理冲突的,则调用相关方法把树分开
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 采用链表处理冲突
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    //通过上述讲解的原理来计算节点的新位置
                    do {
                        // 原索引
                        next = e.next;
                      //这里来判断如果等于true e这个节点在resize之后不需要移动位置
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}


4.3.4 删除方法(remove)


理解了put方法之后,remove方法已经没什么难度了,所以重复的内容就不再做详细介绍了。


删除的话就是首先先找到元素的位置,如果是链表就遍历链表找到元素之后删除。如果是用红黑树就遍历树然后找到之后做删除,树小于6的时候要转链表。


删除remove方法:

//remove方法的具体实现在removeNode方法中,所以我们重点看下removeNode方法
public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

removeNode方法:

final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
      //根据hash找到位置 
      //如果当前key映射到的桶不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //如果桶上的节点就是要找的key,则将node指向该节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                //说明节点存在下一个节点
                if (p instanceof TreeNode)
                    //说明是以红黑树来处理的冲突,则获取红黑树要删除的节点
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //判断是否以链表方式处理hash冲突,是的话则通过遍历链表来寻找要删除的节点
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //比较找到的key的value和要删除的是否匹配
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                //通过调用红黑树的方法来删除节点
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    //链表删除
                    tab[index] = node.next;
                else
                    p.next = node.next;
                //记录修改次数
                ++modCount;
                //变动的数量
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }


4.3.5查找元素方法(get)


查找方法,通过元素的Key找到Value。


代码如下:

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

get方法主要调用的是getNode方法,代码如下:

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //如果哈希表不为空并且key对应的桶上不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        /* 
          判断数组元素是否相等
          根据索引的位置检查第一个元素
          注意:总是检查第一个元素
        */
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果不是第一个元素,判断是否有后续节点
        if ((e = first.next) != null) {
            // 判断是否是红黑树,是的话调用红黑树中的getTreeNode方法获取节点
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                // 不是红黑树的话,那就是链表结构了,通过循环的方法判断链表中是否存在该key
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

小结:


1.get方法实现的步骤:


1)通过hash值获取该key映射到的桶

2)桶上的key就是要查找的key,则直接找到并返回

3)桶上的key不是要找的key,则查看后续的节点:


a:如果后续节点是红黑树节点,通过调用红黑树的方法根据key获取value


b:如果后续节点是链表节点,则通过循环遍历链表根据key获取value


2.上述红黑树节点调用的是getTreeNode方法通过树形节点的find方法进行查找:

 final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
 }
 final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;//找到之后直接返回
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                //递归查找
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

3.查找红黑树,由于之前添加时已经保证这个树是有序的了,因此查找时基本就是折半查找,效率更高。


4.这里和插入时一样,如果对比节点的哈希值和要查找的哈希值相等,就会判断key是否相等,相等就直接返回。不相等就从子树中递归查找。


5.若为树,则在树中通过key.equals(k)查找,O(logn)

若为链表,则在链表中通过key.equals(k)查找,O(n)。


4.3.6遍历HashMap集合几种方式


1、分别遍历Key和Values

2、使用Iterator迭代器迭代

3、通过get方式(不建议使用)

说明:根据阿里开发手册,不建议使用这种方式,因为迭代两次。keySet获取Iterator一次,还有通过get又迭代一次。降低性能。


4.jdk8以后使用Map接口中的默认方法:

default void forEach(BiConsumer<? super K,? super V> action) 
BiConsumer接口中的方法:
  void accept​(T t, U u) 对给定的参数执行此操作。  
    参数 
            t - 第一个输入参数 
            u - 第二个输入参数 

遍历代码:

public class Demo02 {
    public static void main(String[] args) {
        HashMap<String,String> m1 = new HashMap();
        m1.put("001", "zhangsan");
        m1.put("002", "lisi");
        m1.forEach((key,value)->{
            System.out.println(key+"---"+value);
        });
    }
}


5.如何设计多个非重复的键值对要存储HashMap的初始化?


5.1HashMap的初始化问题描述


如果我们确切的知道我们有多少键值对需要存储,那么我们在初始化HashMap的时候就应该指定它的容量,以防止HashMap自动扩容,影响使用效率。


默认情况下HashMap的容量是16,但是,如果用户通过构造函数指定了一个数字作为容量,那么Hash会选择大于该数字的第一个2的幂作为容量。(3->4、7->8、9->16) .这点我们在上述已经进行过讲解。


《阿里巴巴Java开发手册》中建议我们设置HashMap的初始化容量。

那么,为什么要这么建议?你有想过没有。


当然,以上建议也是有理论支撑的。我们上面介绍过,HashMap的扩容机制,就是当达到扩容条件时会进行扩容。HashMap的扩容条件就是当HashMap中的元素个数(size)超过临界值(threshold)时就会自动扩容。在HashMap中,threshold = loadFactor * capacity。


所以,如果我们没有设置初始容量大小,随着元素的不断增加,HashMap会有可能发生多次扩容,而HashMap中的扩容机制决定了每次扩容都需要重建hash表,是非常影响性能的。


但是设置初始化容量,设置的数值不同也会影响性能,那么当我们已知HashMap中即将存放的KV个数的时候,容量设置成多少为好呢?


5.2HashMap中容量的初始化


当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?


关于这个值的设置,在《阿里巴巴Java开发手册》有以下建议:

也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。我们应该尽量减少扩容。原因也已经分析过。


如果我们通过initialCapacity/ 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。


当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成initialCapacity/0.75 + 1的话,可以有效的减少冲突也可以减小误差。


所以,我可以认为,当我们明确知道HashMap中元素的个数的时候,把默认容量设置成initialCapacity/ 0.75F + 1.0F是一个在性能上相对好的选择,但是,同时也会牺牲些内存。


我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。


但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因也已经分析过。


但是,为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成initialCapacity/ 0.75F + 1.0F。


目录
相关文章
|
25天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
52 5
|
1月前
|
存储 算法 安全
HashMap常见面试题(超全面):实现原理、扩容机制、链表何时升级为红黑树、死循环
HashMap常见面试题:红黑树、散列表,HashMap实现原理、扩容机制,HashMap的jd1.7与jdk1.8有什么区别,寻址算法、链表何时升级为红黑树、死循环
|
3月前
|
安全 Java
【Java集合类面试十五】、说一说HashMap和HashTable的区别
HashMap和Hashtable的主要区别在于Hashtable是线程安全的,不允许null键和值,而HashMap是非线程安全的,允许null键和值。
|
3月前
|
安全 Java
【Java集合类面试十三】、HashMap如何实现线程安全?
实现HashMap线程安全的方法包括使用Hashtable类、ConcurrentHashMap,或通过Collections工具类将HashMap包装成线程安全的Map。
|
3月前
|
Java
【Java集合类面试十一】、HashMap为什么用红黑树而不用B树?
HashMap选择使用红黑树而非B树,是因为红黑树在内存中实现简单,节点更小,占用内存少,且在插入、删除和查找操作上提供更好的平衡性能。
|
3月前
|
安全 Java
【Java集合类面试十六】、HashMap与ConcurrentHashMap有什么区别?
HashMap是非线程安全的,而ConcurrentHashMap通过减少锁粒度来提高并发性能,检索操作无需锁,从而提供更好的线程安全性和性能。
|
3月前
|
Java
【Java集合类面试十四】、HashMap是如何解决哈希冲突的?
HashMap解决哈希冲突的方法是通过链表和红黑树:当链表长度超过一定阈值时,转换为红黑树以提高性能;当链表长度缩小到另一个阈值时,再转换回链表。
|
3月前
|
Java
【Java集合类面试十二】、HashMap为什么线程不安全?
HashMap在并发环境下执行put操作可能导致循环链表的形成,进而引起死循环,因而它是线程不安全的。
|
3月前
|
存储 Java
【Java集合类面试十】、HashMap中的循环链表是如何产生的?
在多线程环境下,HashMap在扩容时如果发生条件竞争,元素的插入顺序可能形成循环链表,导致死循环。
|
1月前
|
Java
让星星⭐月亮告诉你,HashMap中保证红黑树根节点一定是对应链表头节点moveRootToFront()方法源码解读
当红黑树的根节点不是其对应链表的头节点时,通过调整指针的方式将其移动至链表头部。具体步骤包括:从链表中移除根节点,更新根节点及其前后节点的指针,确保根节点成为新的头节点,并保持链表结构的完整性。此过程在Java的`HashMap$TreeNode.moveRootToFront()`方法中实现,确保了高效的数据访问与管理。
29 2