助力工业物联网,工业大数据之数仓事实层DWB层构建【十七】

简介: 助力工业物联网,工业大数据之数仓事实层DWB层构建【十七】

数仓事实层DWB层构建

01:项目回顾

  1. 项目中有哪些主题域?
  • 服务域:工单主题、安装主题
  • 客户域:客户事主题
  • 仓储域:物料主题
  • 运营域:工时主题
  • 市场域:工单主题
  1. 项目中有哪些核心维度?
  • 时间维度
  • 地区维度
  • 油站维度
  • 服务站点维度
  • 组织机构维度
  • 物流维度
  • 仓库维度
  • ……
  1. 行政地区维度中有哪些核心字段?
省份id  省份名称  城市id  城市名称    县区id    县区名称    乡镇id  乡镇名称
  • 定期或者按照变化,全量同步到数据仓库中
  1. 时间维度中有哪些核心字段?
年 季度    月   周   日   年的第几天 周的第几天 工作日   节假日   周日
  • 每一年提前将下一年的时间维度信息生成,增量放入数据仓库中
  1. 服务网点维度中有哪些核心字段?
服务网点id  编码  名称    省份   城市   县区    组织机构id  组织机构名称
  1. 油站维度中有哪些核心字段?
油站id  油站编码  油站名称    省份  城市  县区  乡镇    客户id  客户名称  公司id  公司名称
  1. 组织机构维度中有哪些核心字段?
工程师id 工程师名称   岗位id  岗位名称    部门id    部门名称
  1. 集中问题
  • DG连接不上:YARN的进程故障,导致ThriftServer无法运行
  • Hadoop:NameNode、DataNode、ResourceManager、NodeManager
  • Hive:Metastore、Hiveserver2
  • Spark:ThriftServer
  • 异常:ProtocolBuffer 不匹配:dim_date
  • 数据文件与表的定义是不匹配的
  • step1:检查建表语法
  • step2:文件:上传时候文件是不对的
  • 语法 + 函数 + 数据关系
  • 语法 + 函数 :计算
  • 数据关系:逻辑

02:项目目标

  • 整体目标:构建数仓中的DWB:主题事务事实表
  • 核心的主题事实的构建:SQL实现 + 主题的指标
  • 原始事务事实数据【DWD】:订单数据
o001    userid1   2021-01-01  200.00
  • 主题事务事实数据【DWB】:订单主题
o001    userid1   2021-01-01  订单总金额:200   订单总个数:1
  • 主题周期快照事实表:数据应用层【ST:维度【DWS】 + 事实指标【DWB】】
2021-01-01  订单总金额:xxxx    订单总个数:xxxx
  • 重点内容:SQL以及数据关系

03:分层回顾

  • 目标:回顾一站制造项目分层设计
  • 实施
  • ODS层 :原始数据层:101张表:AVRO
  • DWD层:明细数据层:101张表:ORC
  • DWS层:维度数据层:维度表
  • DWB层:轻度汇总层:Join + 构建基础指标
  • 小结
  • 回顾一站制造项目分层设计

04:DWB层的设计

  • 目标:掌握DWB层的设计
  • 路径
  • step1:功能
  • step2:来源
  • step3:需求
  • 实施
  • 功能:存储每个事实主题需要的事务事实数据以及轻度聚合的结果,供ST层基于DWS层进行统计聚合得到最终每个主题的指标
  • 关联:将事实主题需要的字段进行关联合并到一张事实表中,构建基于主题的事实
  • 聚合:对常用的基础指标基于细粒度实现轻度聚合
  • 来源:对DWD层的数据进行关联或者轻度聚合
  • 需求:按照一站制造的业务主题的划分需求,构建每个主题的DWB层的数据
  • 小结
  • 掌握DWB层的设计


相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
6月前
|
机器学习/深度学习 算法 大数据
构建数据中台,为什么“湖仓一体”成了大厂标配?
在大数据时代,数据湖与数据仓库各具优势,但单一架构难以应对复杂业务需求。湖仓一体通过融合数据湖的灵活性与数据仓的规范性,实现数据分层治理、统一调度,既能承载海量多源数据,又能支撑高效分析决策,成为企业构建数据中台、推动智能化转型的关键路径。
|
10月前
|
人工智能 关系型数据库 OLAP
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。
788 17
|
9月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
7月前
|
分布式计算 Serverless OLAP
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
|
6月前
|
存储 监控 大数据
大数据之路:阿里巴巴大数据实践——事实表设计
事实表是数据仓库核心,用于记录可度量的业务事件,支持高性能查询与低成本存储。主要包含事务事实表(记录原子事件)、周期快照表(捕获状态)和累积快照表(追踪流程)。设计需遵循粒度统一、事实可加性、一致性等原则,提升扩展性与分析效率。
|
7月前
|
存储 SQL 分布式计算
MaxCompute x 聚水潭:基于近实时数仓解决方案构建统一增全量一体化数据链路
聚水潭作为中国领先的电商SaaS ERP服务商,致力于为88,400+客户提供全链路数字化解决方案。其核心ERP产品助力企业实现数据驱动的智能决策。为应对业务扩展带来的数据处理挑战,聚水潭采用MaxCompute近实时数仓Delta Table方案,有效提升数据新鲜度和计算效率,提效比例超200%,资源消耗显著降低。未来,聚水潭将进一步优化数据链路,结合MaxQA实现实时分析,赋能商家快速响应市场变化。
326 0
|
12月前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
889 58
|
12月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
1472 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目

热门文章

最新文章