<你想看的我这里都有😎 >
二叉树的遍历
概念:二叉树遍历是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
二叉树的递归定义:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树,左子树和右子树又同样都是二叉树。
包含内容:
- 前序遍历——访问根结点的操作发生在遍历其左右子树之前,即根->左->右
- 中序遍历——访问根结点的操作发生在遍历其左右子树之中,即左->根->右
- 后序遍历——访问根结点的操作发生在遍历其左右子树之后,即左->右->根
为了方便学习,我们将空的位置仍然以NULL表示
模拟实现二叉树(链式二叉树)
#include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }TreeNode; TreeNode* BuyTreeNode(int x) { TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); assert(node); node->data = x; node->left = NULL; node->right = NULL; return node; } TreeNode* CreatTree() { TreeNode* node1 = BuyTreeNode(1); TreeNode* node2 = BuyTreeNode(2); TreeNode* node3 = BuyTreeNode(3); TreeNode* node4 = BuyTreeNode(4); TreeNode* node5 = BuyTreeNode(5); TreeNode* node6 = BuyTreeNode(6); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = NULL; //node3->left = NULL; //node3->right = NULL; node4->left = node5; node4->right = node6; //node5->left = NULL; //node5->right = NULL; //node6->left = NULL; //node6->right= NULL; return node1; } int main() { TreeNode* root = CreatTree(); return 0; }
前序遍历
前序遍历的实现
#include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }TreeNode; TreeNode* BuyTreeNode(int x) { TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); assert(node); node->data = x; node->left = NULL; node->right = NULL; return node; } TreeNode* CreatTree() { TreeNode* node1 = BuyTreeNode(1); TreeNode* node2 = BuyTreeNode(2); TreeNode* node3 = BuyTreeNode(3); TreeNode* node4 = BuyTreeNode(4); TreeNode* node5 = BuyTreeNode(5); TreeNode* node6 = BuyTreeNode(6); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = NULL; //node3->left = NULL; //node3->right = NULL; node4->left = node5; node4->right = node6; //node5->left = NULL; //node5->right = NULL; //node6->left = NULL; //node6->right= NULL; return node1; } void PrevOrder(TreeNode* root) { if(root == NULL) { printf("N "); return; } printf("%d ", root->data); PrevOrder(root->left); PrevOrder(root->right); } int main() { TreeNode* root = CreatTree(); PrevOrder(root); return 0; }
实现步骤:
1、在完成一个二叉树的基础上,我们实现了前序遍历的理论变现,即根->左->右
2、先令前序遍历函数接收总根节点的值(单链表的头)
3、进入函数后判断此时的根节点(1)是否为空,若为空则打印N表示空,若不为空则打印对应的值(1)
4、此后递归的读取当前结点(1)的左子树的根节点(3),若该结点不为空则打印对应的值(3),然后继续递归读取其左子树的根节点(NULL),此时结点为空打印N后返回上一次的位置(3),然后执行当前结点(3)的右递归,当前结点的右子树的根节点(NULL)为空打印N后结束,返回上一次的位置(2)(到这里整个左子树最底层的一个PrevOrder已经结束了),然后执行当前结点(2)的右递归,当前结点的右子树的根节点(NULL)为空打印N后结束,返回上一次位置(1)(到这里整个左子树的倒数第二个PrevOrder已经结束了)
5、接下俩就应该去读取(1)的右子树的根节点(4)了(因为到这里第一个PrevOrder的左递归才算完全结束,现在开始右递归)
6、(4)不为空打印对应的值(4),然后继续递归读取其左子树的根节点(5),不为空打印对应的值(5),然后继续递归读取其左子树的根节点(NULL)为空打印N后返回上一次的位置(5),然后继续递归读取其右子树的根节点(NULL)为空打印N后返回上一次的位置(4)(到这里整个右子最底层的一个PrevOrder已经结束了)然后继续递归读取其右子树的根节点(6),不为空打印对应的值(6),然后继续递归读取其左子树的根节点(NULL)为空打印N后返回上一次的位置(6),然后继续递归读取其右子树的根节点(NULL)为空后打印N后返回上一次的位置(4)
7、至此,该二叉树的前序遍历完成
一共用了五次PrevOrder,左子树两次,右子树两次,主二叉树一次
二叉树的递归遍历图
中序遍历
中序遍历的实现
#include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }TreeNode; TreeNode* BuyTreeNode(int x) { TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); assert(node); node->data = x; node->left = NULL; node->right = NULL; return node; } TreeNode* CreatTree() { TreeNode* node1 = BuyTreeNode(1); TreeNode* node2 = BuyTreeNode(2); TreeNode* node3 = BuyTreeNode(3); TreeNode* node4 = BuyTreeNode(4); TreeNode* node5 = BuyTreeNode(5); TreeNode* node6 = BuyTreeNode(6); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = NULL; //node3->left = NULL; //node3->right = NULL; node4->left = node5; node4->right = node6; //node5->left = NULL; //node5->right = NULL; //node6->left = NULL; //node6->right= NULL; return node1; } void InOrder(TreeNode* root) { if (root == NULL) { printf("N "); return; } InOrder(root->left); printf("%d ", root->data); InOrder(root->right); } int main() { TreeNode* root = CreatTree(); InOrder(root); return 0; }
实现步骤:中序遍历只是将前序遍历的PrevOrder中的 (root->data)与 (root->left)交换了位置,具体实现内容建议自行尝试
后序遍历
后序遍历的实现
#include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }TreeNode; TreeNode* BuyTreeNode(int x) { TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); assert(node); node->data = x; node->left = NULL; node->right = NULL; return node; } TreeNode* CreatTree() { TreeNode* node1 = BuyTreeNode(1); TreeNode* node2 = BuyTreeNode(2); TreeNode* node3 = BuyTreeNode(3); TreeNode* node4 = BuyTreeNode(4); TreeNode* node5 = BuyTreeNode(5); TreeNode* node6 = BuyTreeNode(6); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = NULL; //node3->left = NULL; //node3->right = NULL; node4->left = node5; node4->right = node6; //node5->left = NULL; //node5->right = NULL; //node6->left = NULL; //node6->right= NULL; return node1; } void LaterOrder(TreeNode* root) { if (root == NULL) { printf("N "); return; } LaterOrder(root->left); LaterOrder(root->right); printf("%d ", root->data); } int main() { TreeNode* root = CreatTree(); LaterOrder(root); printf("\n"); return 0; }
注意事项:
1、建议多画图自己尝试一遍
2、搞懂此时的root是谁以及root->data到底打印的是谁的值,是完成三次遍历的基础
整体代码
#include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }TreeNode; TreeNode* BuyTreeNode(int x) { TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); assert(node); node->data = x; node->left = NULL; node->right = NULL; return node; } TreeNode* CreatTree() { TreeNode* node1 = BuyTreeNode(1); TreeNode* node2 = BuyTreeNode(2); TreeNode* node3 = BuyTreeNode(3); TreeNode* node4 = BuyTreeNode(4); TreeNode* node5 = BuyTreeNode(5); TreeNode* node6 = BuyTreeNode(6); node1->left = node2; node1->right = node4; node2->left = node3; //node2->right = NULL; //node3->left = NULL; //node3->right = NULL; node4->left = node5; node4->right = node6; //node5->left = NULL; //node5->right = NULL; //node6->left = NULL; //node6->right= NULL; return node1; } void PrevOrder(TreeNode* root) { if(root == NULL) { printf("N "); return; } printf("%d ", root->data); PrevOrder(root->left); PrevOrder(root->right); } void InOrder(TreeNode* root) { if (root == NULL) { printf("N "); return; } InOrder(root->left); printf("%d ", root->data); InOrder(root->right); } void LaterOrder(TreeNode* root) { if (root == NULL) { printf("N "); return; } LaterOrder(root->left); LaterOrder(root->right); printf("%d ", root->data); } int main() { TreeNode* root = CreatTree(); PrevOrder(root); printf("\n"); InOrder(root); printf("\n"); LaterOrder(root); printf("\n"); return 0; }
~over~