Python框架批量数据抓取的高级教程

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: Python框架批量数据抓取的高级教程

16云IP.png

一、背景介绍
批量数据抓取是一种常见的数据获取方式,能够帮助我们快速、高效地获取网络上的大量信息。本文将介绍如何使用Python框架进行大规模抽象数据,以及如何处理这个过程中可能遇到的问题。
二、项目需求
我们将爬取大量知乎文章,讨论具体的项目需求。我们明确需要我们希望从知乎上获取哪些数据,是特定领域的文章还是涵盖多个主题的文章? 我们需要确定我们的目标是获取多少篇文章,以及这些文章的相关信息,比如作者、发布时间等。这些明确的项目需求将有助于我们设计和实现一个高效的爬虫系统,确保我们能够准确、稳定地获取所需的数据。
三、批量采集任务
1.确定采集网站及关键词,关键词获取代码示例
首先,我们需要确定我们要从知乎网站进行数据采集,并确定我们感兴趣的关键词。然后,我们将使用Python的requests库进行网页请求,以及BeautifulSoup库进行HTML文档的解析。这两个库帮助我们获取网页内容并提取我们需要的信息。下面是一个示例代码,演示如何使用请求库获取知乎网页内容并使用BeautifulSoup库关键提取词:
```import requests
from bs4 import BeautifulSoup

定义知乎问题页面的URL

url = 'https://www.zhihu.com/question/12345678'

发送请求并获取响应

response = requests.get(url)

使用BeautifulSoup解析HTML文档

soup = BeautifulSoup(response.text, 'html.parser')

提取关键词

keywords = soup.find('meta', attrs={'name': 'keywords'})['content']
print(keywords)


2.发送请求并获取响应
 使用requests库发送请求并获取响应非常简单。只需使用get()方法发送请求,然后可以通过下面的response对象获取响应数据。是一个示例代码:
```import requests

url = 'https://www.zhihu.com/search?q=Python'
response = requests.get(url)
print(response.text)

3.解析HTML文档,
解析HTML文档,实现代码过程使用BeautifulSoup库可以很容易地解析HTML文档。下面是一个示例代码,演示如何使用BeautifulSoup解析知乎问题页面的HTML文档:
4.提取文章内容,
实现代码过程要从知乎问题页面的HTML文档中提取文章内容,可以使用BeautifulSoup的find()或find_all()方法来查找的特定HTML标签。下面是一个示例代码,演示如何从HTML文档中提取知乎问题页面的内容:
```from bs4 import BeautifulSoup

html_doc = """

这是一个知乎问题

问题内容和回答内容都在这里。



"""

soup = BeautifulSoup(html_doc, 'html.parser')

question_content = soup.find('h1').get_text()
answer_content = soup.find_all('p')[1].get_text()
print(question_content)
print(answer_content)

5.保存文章内容
实现代码过程将提取的文章内容保存到本地文件或数据库中,可以使用Python内置的文件操作或者数据库操作。下面是一个示例代码,演示如何将提取的文章内容保存到本地文件:
```article_content = "这是知乎问题的内容和回答内容。"

with open('zhihu_article.txt', 'w') as file:
    file.write(article_content)

6.循环采集多篇文章 我们将讨论如何循环采集多篇文章,以满足批量数据抓取的需求。
# 伪代码示例
for page in range(1, 11):  # 假设要采集10页的文章
    url = f'https://www.zhihu.com/search?q=Python&page={page}'
    # 发送请求并获取响应
    # 解析HTML文档
    # 提取文章内容
    # 保存文章内容

7.增加异常处理机制 在这一部分,我们将介绍如何增加异常处理机制,以应对在数据采集过程中可能遇到的问题。

```import requests

url = 'https://www.zhihu.com/question/12345678'

try:
response = requests.get(url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(e)

# 处理异常的代码

8.优化代码性能 我们将讨论如何优化代码性能,确保高效的批量数据抓取。在完整的抓取代码中,我们将包含代理信息,以确保数据抓取的稳定性和可靠性。
```import requests

proxy_host = "www.16yun.cn"
proxy_port = "5445"
proxy_user = "16QMSOML"
proxy_pass = "280651"

url = 'https://www.zhihu.com'
proxy = {
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"https://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}"
}

response = requests.get(url, proxies=proxy)

print(response.text)

四、注意事项
在进行批量抓取数据时,需要注意网站的反爬虫,遵守robots.txt

相关文章
|
20天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
1月前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
280 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
|
2天前
|
C语言 Python
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。
|
10天前
|
数据采集 存储 数据挖掘
深入剖析 Python 爬虫:淘宝商品详情数据抓取
深入剖析 Python 爬虫:淘宝商品详情数据抓取
|
13天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
1月前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
186 9
|
1月前
|
JSON 安全 中间件
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
110 15
|
1月前
|
关系型数据库 API 数据库
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
|
1月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
93 7
|
Python 存储
Python的高级特征你知多少?
IEEE Spectrum 于9月6日发布了2019年最受欢迎的编程语言排名,无疑Python蝉联第一,成绩颇为亮眼。从前年开始,Python 就开始霸占榜单长达 2 年,成为编程市场上份额最高的语言。 Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!
1022 0
Python的高级特征你知多少?

热门文章

最新文章