☆打卡算法☆LeetCode 148. 排序链表 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: ☆打卡算法☆LeetCode 148. 排序链表 算法解析

一、题目

1、算法题目

“给定链表的头结点,返回按照升序排序的链表。”

2、题目描述

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表

1702361596778.jpg

示例 1:
输入: head = [4,2,1,3]
输出: [1,2,3,4]
示例 2:
输入: head = [-1,5,3,4,0]
输出: [-1,0,3,4,5]

二、解题

1、思路分析

147题是实现链表的插入排序,时间复杂度是O(n2)。

这道题要求时间复杂度更低的排序算法,要求达到O(n log n)的时间复杂度。

可以实现O(n log n)的时间复杂度的排序算法有归并排序、堆排序和快速排序,其中最适合链表的排序算法是归并排序。

首先来了解一下什么是归并排序,归并排序是自顶向下直接合并的方式进行排序,具体过程如下:

  • 1、找到链表中点,以中点为界,将链表拆成两个子链表。
  • 2、对两个子链表分别排序。
  • 3、将两个排序后子链表合并,得到完成链表。

因为上述的过程是通过递归实现的,所以时间复杂度为O(n log n),空间复杂度为O(log n)。

2、代码实现

代码参考:

class Solution {
    public ListNode sortList(ListNode head) {
        return sortList(head, null);
    }
    public ListNode sortList(ListNode head, ListNode tail) {
        if (head == null) {
            return head;
        }
        if (head.next == tail) {
            head.next = null;
            return head;
        }
        ListNode slow = head, fast = head;
        while (fast != tail) {
            slow = slow.next;
            fast = fast.next;
            if (fast != tail) {
                fast = fast.next;
            }
        }
        ListNode mid = slow;
        ListNode list1 = sortList(head, mid);
        ListNode list2 = sortList(mid, tail);
        ListNode sorted = merge(list1, list2);
        return sorted;
    }
    public ListNode merge(ListNode head1, ListNode head2) {
        ListNode dummyHead = new ListNode(0);
        ListNode temp = dummyHead, temp1 = head1, temp2 = head2;
        while (temp1 != null && temp2 != null) {
            if (temp1.val <= temp2.val) {
                temp.next = temp1;
                temp1 = temp1.next;
            } else {
                temp.next = temp2;
                temp2 = temp2.next;
            }
            temp = temp.next;
        }
        if (temp1 != null) {
            temp.next = temp1;
        } else if (temp2 != null) {
            temp.next = temp2;
        }
        return dummyHead.next;
    }
}

1702361655726.jpg


3、时间复杂度

时间复杂度:O(n log n)

其中n是链表的长度。

空间复杂度:O(log n)

其中n是链表的长度,空间复杂度主要取决于递归调用的栈空间。

三、总结

通过递归实现链表的归并排序,主要分成两步。

第一步是分割成两个子链表。

可以使用快慢指针,快指针每次移动2步,慢指针每次移动1步,当快指针移动到链表末尾时,慢指针指向链表的节点就是链表的中点。

第二步是子链表递归分别排序。

设置两个指针分别指向两个链表头部,比较两个指针处节点值大小,由小到大加入合并到链表头部,指针交替前进,直到添加完两个链表。

相关文章
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
61 3
|
2天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
140 30
|
6天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
247 15
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
存储 算法 C语言
【C语言】深入浅出:C语言链表的全面解析
链表是一种重要的基础数据结构,适用于频繁的插入和删除操作。通过本篇详细讲解了单链表、双向链表和循环链表的概念和实现,以及各类常用操作的示例代码。掌握链表的使用对于理解更复杂的数据结构和算法具有重要意义。
404 6
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!