栈空间和堆空间:数据是如何存储的?
JavaScript 中的数据是如何存储在内存中的。
JavaScript 是什么类型的语言
在使用之前就需要确认其变量数据类型的称为静态语言。
在运行过程中需要检查数据类型的语言称为动态语言。
JavaScript 就是动态语言,因为在声明变量之前并不需要确认其数据类型。
支持隐式类型转换的语言称为弱类型语言,不支持隐式类型转换的语言称为强类型语言。在这点上,C 和 JavaScript 都是弱类型语言。
JavaScript 的数据类型
JavaScript 是一种弱类型的、动态的语言。
- 弱类型,意味着你不需要告诉 JavaScript 引擎这个或那个变量是什么数据类型,JavaScript 引擎在运行代码的时候自己会计算出来。
- 动态,意味着你可以使用同一个变量保存不同类型的数据。
JavaScript 中的数据类型一种有 8 种,它们分别是:
- 第一点,使用 typeof 检测 Null 类型时,返回的是 Object。这是当初 JavaScript 语言的一个 Bug,一直保留至今,之所以一直没修改过来,主要是为了兼容老的代码。
- 第二点,Object 类型比较特殊,它是由上述 7 种类型组成的一个包含了 key-value 对的数据类型。
- 第三点,我们把前面的 7 种数据类型称为原始类型,把最后一个对象类型称为引用类型,之所以把它们区分为两种不同的类型,是因为它们在内存中存放的位置不一样。原始类型的数据值都是直接保存在“栈”中的,引用类型的值是存放在“堆”中的。
内存空间
JavaScript 的内存模型
代码空间主要是存储可执行代码的
栈空间和堆空间
栈空间就是我们之前反复提及的调用栈,是用来存储执行上下文的
当执行一段代码时,需要先编译,并创建执行上下文,然后再按照顺序执行代码。
对象类型是存放在堆空间的,在栈空间中只是保留了对象的引用地址,当 JavaScript 需要访问该数据的时候,是通过栈中的引用地址来访问的。
程序在执行过程中为什么需要堆和栈两种数据结构?
JavaScript 引擎需要用栈来维护程序执行期间上下文的状态,如果栈空间大了话,所有的数据都存放在栈空间里面,那么会影响到上下文切换的效率,进而又影响到整个程序的执行效率。
调用栈中切换执行上下文状态
通常情况下,栈空间都不会设置太大,主要用来存放一些原始类型的小数据。而引用类型的数据占用的空间都比较大,所以这一类数据会被存放到堆中,堆空间很大,能存放很多大的数据,不过缺点是分配内存和回收内存都会占用一定的时间。
变量赋值
在 JavaScript 中,赋值操作和其他语言有很大的不同,原始类型的赋值会完整复制变量值,而引用类型的赋值是复制引用地址。
引用赋值
再谈闭包
由于变量 myName、test1、test2 都是原始类型数据,所以在执行 foo 函数的时候,它们会被压入到调用栈中;当 foo 函数执行结束之后,调用栈中 foo 函数的执行上下文会被销毁,其内部变量 myName、test1、test2 也应该一同被销毁。
当 foo 函数的执行上下文销毁时,由于 foo 函数产生了闭包,所以变量 myName 和 test1 并没有被销毁,而是保存在内存中,那么应该如何解释这个现象呢?
站在内存模型的角度来分析这段代码的执行流程。
- 当 JavaScript 引擎执行到 foo 函数时,首先会编译,并创建一个空执行上下文。
- 在编译过程中,遇到内部函数 setName,JavaScript 引擎还要对内部函数做一次快速的词法扫描,发现该内部函数引用了 foo 函数中的 myName 变量,由于是内部函数引用了外部函数的变量,所以 JavaScript 引擎判断这是一个闭包,于是在堆空间创建换一个“closure(foo)”的对象(这是一个内部对象,JavaScript 是无法访问的),用来保存 myName 变量。
- 接着继续扫描到 getName 方法时,发现该函数内部还引用变量 test1,于是 JavaScript 引擎又将 test1 添加到“closure(foo)”对象中。这时候堆中的“closure(foo)”对象中就包含了 myName 和 test1 两个变量了。
- 由于 test2 并没有被内部函数引用,所以 test2 依然保存在调用栈中。
画出执行到 foo 函数中“return innerBar”语句时的调用栈状态,如下图所示:
闭包的产生过程
产生闭包的核心有两步:第一步是需要预扫描内部函数;第二步是把内部函数引用的外部变量保存到堆中。
思考
在实际的项目中,经常需要完整地拷贝一个对象,也就是说拷贝完成之后两个对象之间就不能互相影响。那该如何实现呢?
垃圾回收:垃圾数据是如何自动回收的?
有些数据被使用之后,可能就不再需要了,我们把这种数据称为垃圾数据。如果这些垃圾数据一直保存在内存中,那么内存会越用越多,所以我们需要对这些垃圾数据进行回收,以释放有限的内存空间。
不同语言的垃圾回收策略
通常情况下,垃圾数据回收分为手动回收和自动回收两种策略。
如 C/C++ 就是使用手动回收策略,何时分配内存、何时销毁内存都是由代码控制的。 另外一种使用的是自动垃圾回收的策略,如 JavaScript、Java、Python 等语言,产生的垃圾数据是由垃圾回收器来释放的,并不需要手动通过代码来释放。
调用栈中的数据是如何回收的
function foo(){ var a = 1 var b = {name:"极客邦"} function showName(){ var c = 2 var d = {name:"极客时间"} } showName() } foo()
当执行到第 6 行代码时,其调用栈和堆空间状态图如下所示:
当 foo 函数执行结束之后,foo 函数的执行上下文会从堆中被销毁掉,那么它是怎么被销毁的呢?下面我们就来分析一下。
如果执行到 showName 函数时,那么 JavaScript 引擎会创建 showName 函数的执行上下文,并将 showName 函数的执行上下文压入到调用栈中,最终执行到 showName 函数时,其调用栈就如上图所示。与此同时,还有一个记录当前执行状态的指针(称为 ESP) ,指向调用栈中 showName 函数的执行上下文,表示当前正在执行 showName 函数。
接着,当 showName 函数执行完成之后,函数执行流程就进入了 foo 函数,那这时就需要销毁 showName 函数的执行上下文了。ESP 这时候就帮上忙了,JavaScript 会将 ESP 下移到 foo 函数的执行上下文,这个下移操作就是销毁 showName 函数执行上下文的过程。
ESP 指针向下移动怎么就能把 showName 的执行上下文销毁了呢?具体你可以看下面这张移动 ESP 前后的对比图:
从图中可以看出,当 showName 函数执行结束之后,ESP 向下移动到 foo 函数的执行上下文中,上面 showName 的执行上下文虽然保存在栈内存中,但是已经是无效内存了。比如当 foo 函数再次调用另外一个函数时,这块内容会被直接覆盖掉,用来存放另外一个函数的执行上下文。
所以说,当一个函数执行结束之后,JavaScript 引擎会通过向下移动 ESP 来销毁该函数保存在栈中的执行上下文。
堆中的数据是如何回收的
执行上下文被清除,但是堆内存依然存在。
要回收堆中的垃圾数据,就需要用到 JavaScript 中的垃圾回收器了。
foo 函数执行结束后的内存状态
代际假说和分代收集
代际假说有以下两个特点:
- 第一个是大部分对象在内存中存在的时间很短,简单来说,就是很多对象一经分配内存,很快就变得不可访问;
- 第二个是不死的对象,会活得更久。
其实这两个特点不仅仅适用于 JavaScript,同样适用于大多数的动态语言,如 Java、Python 等。
通常,垃圾回收算法有很多种,但是并没有哪一种能胜任所有的场景,你需要权衡各种场景,根据对象的生存周期的不同而使用不同的算法,以便达到最好的效果。
所以,在 V8 中会把堆分为新生代和老生代两个区域,新生代中存放的是生存时间短的对象,老生代中存放的生存时间久的对象。
新生区通常只支持 1~8M 的容量,而老生区支持的容量就大很多了。对于这两块区域,V8 分别使用两个不同的垃圾回收器,以便更高效地实施垃圾回收。
- 副垃圾回收器,主要负责新生代的垃圾回收。
- 主垃圾回收器,主要负责老生代的垃圾回收。
垃圾回收器的工作流程
V8 把堆分成两个区域——新生代和老生代,并分别使用两个不同的垃圾回收器。其实不论什么类型的垃圾回收器,它们都有一套共同的执行流程。
第一步是标记空间中活动对象和非活动对象。所谓活动对象就是还在使用的对象,非活动对象就是可以进行垃圾回收的对象。
第二步是回收非活动对象所占据的内存。其实就是在所有的标记完成之后,统一清理内存中所有被标记为可回收的对象。
第三步是做内存整理。一般来说,频繁回收对象后,内存中就会存在大量不连续空间,我们把这些不连续的内存空间称为内存碎片。当内存中出现了大量的内存碎片之后,如果需要分配较大连续内存的时候,就有可能出现内存不足的情况。所以最后一步需要整理这些内存碎片,但这步其实是可选的,因为有的垃圾回收器不会产生内存碎片,比如副垃圾回收器。
副垃圾回收器
副垃圾回收器主要负责新生区的垃圾回收。而通常情况下,大多数小的对象都会被分配到新生区,所以说这个区域虽然不大,但是垃圾回收还是比较频繁的。
新生代中用Scavenge 算法来处理。所谓 Scavenge 算法,是把新生代空间对半划分为两个区域,一半是对象区域,一半是空闲区域,如下图所示:
新生区要划分为对象区域和空闲区域
新加入的对象都会存放到对象区域,当对象区域快被写满时,就需要执行一次垃圾清理操作。
在垃圾回收过程中,首先要对对象区域中的垃圾做标记;标记完成之后,就进入垃圾清理阶段,副垃圾回收器会把这些存活的对象复制到空闲区域中,同时它还会把这些对象有序地排列起来,所以这个复制过程,也就相当于完成了内存整理操作,复制后空闲区域就没有内存碎片了。
完成复制后,对象区域与空闲区域进行角色翻转,也就是原来的对象区域变成空闲区域,原来的空闲区域变成了对象区域。这样就完成了垃圾对象的回收操作,同时这种角色翻转的操作还能让新生代中的这两块区域无限重复使用下去。
提升清理效率
由于新生代中采用的 Scavenge 算法,所以每次执行清理操作时,都需要将存活的对象从对象区域复制到空闲区域。但复制操作需要时间成本,如果新生区空间设置得太大了,那么每次清理的时间就会过久,所以为了执行效率,一般新生区的空间会被设置得比较小。
对象晋升策略
也正是因为新生区的空间不大,所以很容易被存活的对象装满整个区域。为了解决这个问题,JavaScript 引擎采用了对象晋升策略,也就是经过两次垃圾回收依然还存活的对象,会被移动到老生区中。
主垃圾回收器
主垃圾回收器主要负责老生区中的垃圾回收。除了新生区中晋升的对象,一些大的对象会直接被分配到老生区。
老生区中的对象有两个特点,一个是对象占用空间大,另一个是对象存活时间长。
由于老生区的对象比较大,若要在老生区中使用 Scavenge 算法进行垃圾回收,复制这些大的对象将会花费比较多的时间,从而导致回收执行效率不高,同时还会浪费一半的空间。
主垃圾回收器是采用标记 - 清除(Mark-Sweep) 的算法进行垃圾回收的。
首先是标记过程阶段。标记阶段就是从一组根元素开始,递归遍历这组根元素,在这个遍历过程中,能到达的元素称为活动对象,没有到达的元素就可以判断为垃圾数据。
比如最开始的那段代码,当 showName 函数执行退出之后,这段代码的调用栈和堆空间如下图所示:
标记过程
从上图你可以大致看到垃圾数据的标记过程,当 showName 函数执行结束之后,ESP 向下移动,指向了 foo 函数的执行上下文,这时候如果遍历调用栈,是不会找到引用 1003 地址的变量,也就意味着 1003 这块数据为垃圾数据,被标记为红色。由于 1050 这块数据被变量 b 引用了,所以这块数据会被标记为活动对象。这就是大致的标记过程。
接下来就是垃圾的清除过程。它和副垃圾回收器的垃圾清除过程完全不同,你可以理解这个过程是清除掉红色标记数据的过程,可参考下图大致理解下其清除过程:
标记清除过程
上面的标记过程和清除过程就是标记 - 清除算法,不过对一块内存多次执行标记 - 清除算法后,会产生大量不连续的内存碎片。而碎片过多会导致大对象无法分配到足够的连续内存,于是又产生了另外一种算法——标记 - 整理(Mark-Compact) ,这个标记过程仍然与标记 - 清除算法里的是一样的,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。你可以参考下图:
标记整理过程