Linux 内核启动流程与入口函数分析

简介: Linux 内核启动流程与入口函数分析

9495dc3af00c478d97b0cfc24868d66b.png

从启动引导程序 bootloader(uboot)跳转到 Linux 内核后,Linux 内核开始启动,今天我们分析一下 Linux 内核启动入口。

跳转过去初始化肯定是在汇编文件中,根据架构可以选择不同的平台,这里看一下链接汇编文件:

linux4.14/arch/arm/kernel/vmlinux.lds.S

这里可以看到链接时候 Linux 入口是 stext 段,这里是启动引导程序跳转过来的第一段Linux 代码:

ddcb619b790c7fcc1f064c2b9bda082e.png


第一:Linux入口地址

我们先看一下入口地址的确定,同一文件。

SECTIONS
{
 /*
  * XXX: The linker does not define how output sections are
  * assigned to input sections when there are multiple statements
  * matching the same input section name.  There is no documented
  * order of matching.
  *
  * unwind exit sections must be discarded before the rest of the
  * unwind sections get included.
  */
 /DISCARD/ : {
  *(.ARM.exidx.exit.text)
  *(.ARM.extab.exit.text)
  ARM_CPU_DISCARD(*(.ARM.exidx.cpuexit.text))
  ARM_CPU_DISCARD(*(.ARM.extab.cpuexit.text))
  ARM_EXIT_DISCARD(EXIT_TEXT)
  ARM_EXIT_DISCARD(EXIT_DATA)
  EXIT_CALL
#ifndef CONFIG_MMU
  *(.text.fixup)
  *(__ex_table)
#endif
#ifndef CONFIG_SMP_ON_UP
  *(.alt.smp.init)
#endif
  *(.discard)
  *(.discard.*)
 }
 . = PAGE_OFFSET + TEXT_OFFSET;
 .head.text : {
  _text = .;
  HEAD_TEXT
 }


这个 SECTIONS 比较长,只放一部分。在这里有个比较重要的东西:

. = PAGE_OFFSET + TEXT_OFFSET;


这一句表示了 Linux 系统真正的启动地址。

PAGE_OFFSET 是 Linux 内核空间的虚拟起始地址,定义在:

linux4.14/arch/arm64/include/asm/memory.h

2c062c03ae10e2558b2862deddd362a5.png

注意,这里的地址都很重要,很多地方会用到。当然,这里的地址可能会随着 Linux 内核版本的不同和硬件的不同,会变化。这里没有一个具体的数,因为 VA_BITS 中的数字是可选的,大家可以根据自己的平台算一下。

TEXT_OFFSET 定义在:

linux4.14/arch/arm/Makefile 中:

81af09cac438ccc906097d6afdba5360.png

55c73a5ece5f53d71a386f8b06cc3e95.png

这个值一般是 0x00008000 ,算出 PAGE_OFFSET 后加上这个值就是 Linux 内核的起始地址。

修改这个偏移量就可以使Linux内核拷贝到不同的地址,自己修改注意内存对齐。


第二:stext 段

从上面的ENTRY(stext)可以知道,一开始是运行stext段,这个段内的代码是 start_kernel 函数前汇编环境的初始化。


linux4.14/arch/arm64/kernel/head.S

004cb244c20dbeb1829a5cda7200470d.png

preserve_boot_args 保存 bootloader 传递过来的参数。

el2_setup 是设置 Linux 启动模式是 EL2。Linux 有 EL0、EL1、EL2、EL3 四种异常启动模式,这里设置一开始是 EL2,EL2 支持虚拟内存技术,然后注释说明后面又退回 EL1,在 EL1 启动 kernel。EL3 一般是只在安全模式使用。

set_cpu_boot_mode_flag 保存上面 cpu 的启动模式。

__create_page_tables 创建页表。

__cpu_setup 初始化CPU,这里主要是初始化和 MMU 内存相关的 CPU 部分。

__primary_switch 这里会进行跳转。

在同一个文件中,会跳转到这里,739 行开启了MMU。然后最重要的是跳转到

__primary_switched 函数。先把 __primary_switched 地址放到 x8 寄存器中,再跳转到 x8,也就是跳转到 __primary_switched。

14950b31db1424b38e52e13d66ec6476.png

接下来分析 __primary_switched 函数:

faea9590b3a46f7c3f9eb113929984dc.png

16656ec143813da992248aa8ceb06c18.png

324-327  初始化了 init 进程的内存信息,开辟了内存空间。

329-334 设置了向量表。

336-340 保存了FDT,也就是 flat device tree 。

342-348 清除了BSS 段,我们知道一般是内存四区:堆区、栈区、全局区、代码区。其中全局区可以再分为 data 段和 BSS 段,BSS 段存储了未初始化的变量,这里将BSS段进行清零操作,否则内存中的值是不确定的,这是一个传统操作。

367 行跳转到了我们熟悉的 start_kernel,就可以看下面这篇文章:

上次我们写过了 Linux 启动详细流程,这次单独解析 start_kernel 函数。

如下请参考注释:

Linux kernel-6.1/init/main.c

asmlinkage __visible void __init __no_sanitize_address start_kernel(void)
{
 char *command_line;
 char *after_dashes;
 set_task_stack_end_magic(&init_task);/*设置任务栈结束魔术数,用于栈溢出检测*/
 smp_setup_processor_id();/*跟 SMP 有关(多核处理器),设置处理器 ID*/
 debug_objects_early_init();/* 做一些和 debug 有关的初始化 */
 init_vmlinux_build_id();
 cgroup_init_early();/* cgroup 初始化,cgroup 用于控制 Linux 系统资源*/
 local_irq_disable();/* 关闭当前 CPU 中断 */
 early_boot_irqs_disabled = true;
 /*
  * Interrupts are still disabled. Do necessary setups, then
  * enable them.
  * 中断关闭期间做一些重要的操作,然后打开中断
  */
 boot_cpu_init();/* 跟 CPU 有关的初始化 */
 page_address_init();/* 页地址相关的初始化 */
 pr_notice("%s", linux_banner);/* 打印 Linux 版本号、编译时间等信息 */
 early_security_init();
 /* 系统架构相关的初始化,此函数会解析传递进来的
 * ATAGS 或者设备树(DTB)文件。会根据设备树里面
 * 的 model 和 compatible 这两个属性值来查找
 * Linux 是否支持这个单板。此函数也会获取设备树
 * 中 chosen 节点下的 bootargs 属性值来得到命令
 * 行参数,也就是 uboot 中的 bootargs 环境变量的
 * 值,获取到的命令行参数会保存到 command_line 中
 */
 setup_arch(&command_line);
 setup_boot_config();
 setup_command_line(command_line);/* 存储命令行参数 */
 /* 如果只是 SMP(多核 CPU)的话,此函数用于获取
 * CPU 核心数量,CPU 数量保存在变量 nr_cpu_ids 中。
 */
 setup_nr_cpu_ids();
 setup_per_cpu_areas();/* 在 SMP 系统中有用,设置每个 CPU 的 per-cpu 数据 */
 smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
 boot_cpu_hotplug_init();
 build_all_zonelists(NULL);/* 建立系统内存页区(zone)链表 */
 page_alloc_init();/* 处理用于热插拔 CPU 的页 */
 /* 打印命令行信息 */ 
 pr_notice("Kernel command line: %s\n", saved_command_line);
 /* parameters may set static keys */
 jump_label_init();
 parse_early_param();/* 解析命令行中的 console 参数 */
 after_dashes = parse_args("Booting kernel",
      static_command_line, __start___param,
      __stop___param - __start___param,
      -1, -1, NULL, &unknown_bootoption);
 print_unknown_bootoptions();
 if (!IS_ERR_OR_NULL(after_dashes))
  parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
      NULL, set_init_arg);
 if (extra_init_args)
  parse_args("Setting extra init args", extra_init_args,
      NULL, 0, -1, -1, NULL, set_init_arg);
 /* Architectural and non-timekeeping rng init, before allocator init */
 random_init_early(command_line);
 /*
  * These use large bootmem allocations and must precede
  * kmem_cache_init()
  */
 setup_log_buf(0);/* 设置 log 使用的缓冲区*/
 vfs_caches_init_early(); /* 预先初始化 vfs(虚拟文件系统)的目录项和索引节点缓存*/
 sort_main_extable();/* 定义内核异常列表 */
 trap_init();/* 完成对系统保留中断向量的初始化 */
 mm_init();/* 内存管理初始化 */
 ftrace_init();
 /* trace_printk can be enabled here */
 early_trace_init();
 /*
  * Set up the scheduler prior starting any interrupts (such as the
  * timer interrupt). Full topology setup happens at smp_init()
  * time - but meanwhile we still have a functioning scheduler.
  */
 sched_init();/* 初始化调度器,主要是初始化一些结构体 */
 if (WARN(!irqs_disabled(),
   "Interrupts were enabled *very* early, fixing it\n"))
  local_irq_disable();/* 检查中断是否关闭,如果没有的话就关闭中断 */
 radix_tree_init();/* 基数树相关数据结构初始化 */
 maple_tree_init();
 /*
  * Set up housekeeping before setting up workqueues to allow the unbound
  * workqueue to take non-housekeeping into account.
  */
 housekeeping_init();
 /*
  * Allow workqueue creation and work item queueing/cancelling
  * early.  Work item execution depends on kthreads and starts after
  * workqueue_init().
  */
 workqueue_init_early();
 rcu_init();/* 初始化 RCU,RCU 全称为 Read Copy Update(读-拷贝修改) */
 /* Trace events are available after this */
 trace_init();/* 跟踪调试相关初始化 */
 if (initcall_debug)
  initcall_debug_enable();
 context_tracking_init();
 /* init some links before init_ISA_irqs() */
 /* 初始中断相关初始化,主要是注册 irq_desc 结构体变
 * 量,因为 Linux 内核使用 irq_desc 来描述一个中断。
 */
 early_irq_init();
 init_IRQ();/* 中断初始化 */
 tick_init();/* tick 初始化 */
 rcu_init_nohz();
 init_timers();/* 初始化定时器 */
 srcu_init();
 hrtimers_init();/* 初始化高精度定时器 */
 softirq_init();/* 软中断初始化 */
 timekeeping_init();
 time_init();/* 初始化系统时间 */
 /* This must be after timekeeping is initialized */
 random_init();
 /* These make use of the fully initialized rng */
 kfence_init();
 boot_init_stack_canary();
 perf_event_init();
 profile_init();
 call_function_init();
 WARN(!irqs_disabled(), "Interrupts were enabled early\n");
 early_boot_irqs_disabled = false;
 local_irq_enable();/* 使能中断 */
 kmem_cache_init_late();/* slab 初始化,slab 是 Linux 内存分配器 */
 /*
  * HACK ALERT! This is early. We're enabling the console before
  * we've done PCI setups etc, and console_init() must be aware of
  * this. But we do want output early, in case something goes wrong.
  */
 /* 初始化控制台,之前 printk 打印的信息都存放
  * 缓冲区中,并没有打印出来。只有调用此函数
  * 初始化控制台以后才能在控制台上打印信息。
  */
 console_init();
 if (panic_later)
  panic("Too many boot %s vars at `%s'", panic_later,
        panic_param);
 lockdep_init();
 /*
  * Need to run this when irqs are enabled, because it wants
  * to self-test [hard/soft]-irqs on/off lock inversion bugs
  * too:
  */
 locking_selftest();/* 锁自测 */ 
 /*
  * This needs to be called before any devices perform DMA
  * operations that might use the SWIOTLB bounce buffers. It will
  * mark the bounce buffers as decrypted so that their usage will
  * not cause "plain-text" data to be decrypted when accessed.
  */
 mem_encrypt_init();
#ifdef CONFIG_BLK_DEV_INITRD
 if (initrd_start && !initrd_below_start_ok &&
     page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
  pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
      page_to_pfn(virt_to_page((void *)initrd_start)),
      min_low_pfn);
  initrd_start = 0;
 }
#endif
 setup_per_cpu_pageset();
 numa_policy_init();
 acpi_early_init();
 if (late_time_init)
  late_time_init();
 sched_clock_init();
 /* 测定 BogoMIPS 值,可以通过 BogoMIPS 来判断 CPU 的性能
 * BogoMIPS 设置越大,说明 CPU 性能越好。
 */
 calibrate_delay();
 pid_idr_init();
 anon_vma_init();/* 生成 anon_vma slab 缓存 */ 
#ifdef CONFIG_X86
 if (efi_enabled(EFI_RUNTIME_SERVICES))
  efi_enter_virtual_mode();
#endif
 thread_stack_cache_init();
 cred_init();/* 为对象的每个用于赋予资格(凭证) */
 fork_init();/* 初始化一些结构体以使用 fork 函数 */
 proc_caches_init();/* 给各种资源管理结构分配缓存 */
 uts_ns_init();
 key_init();/* 初始化密钥 */
 security_init();/* 安全相关初始化 */
 dbg_late_init();
 net_ns_init();
 vfs_caches_init();/* 虚拟文件系统缓存初始化 */
 pagecache_init();
 signals_init();/* 初始化信号 */
 seq_file_init();
 proc_root_init();/* 注册并挂载 proc 文件系统 */
 nsfs_init();
 /* 初始化 cpuset,cpuset 是将 CPU 和内存资源以逻辑性
 * 和层次性集成的一种机制,是 cgroup 使用的子系统之一
 */
 cpuset_init();
 cgroup_init();/* 初始化 cgroup */
 taskstats_init_early();/* 进程状态初始化 */
 delayacct_init();
 poking_init();
 check_bugs();/* 检查写缓冲一致性 */
 acpi_subsystem_init();
 arch_post_acpi_subsys_init();
 kcsan_init();
 /* Do the rest non-__init'ed, we're now alive */
 /* 调用 rest_init 函数 */
 /* 创建 init、kthread、idle 线程 */
 arch_call_rest_init();
 prevent_tail_call_optimization();
}


目录
相关文章
|
7天前
|
安全 Linux 编译器
探索Linux内核的奥秘:从零构建操作系统####
本文旨在通过深入浅出的方式,带领读者踏上一段从零开始构建简化版Linux操作系统的旅程。我们将避开复杂的技术细节,以通俗易懂的语言,逐步揭开Linux内核的神秘面纱,探讨其工作原理、核心组件及如何通过实践加深理解。这既是一次对操作系统原理的深刻洞察,也是一场激发创新思维与实践能力的冒险。 ####
|
9天前
|
网络协议 Linux 调度
深入探索Linux操作系统的心脏:内核与系统调用####
本文旨在揭开Linux操作系统中最为核心的部分——内核与系统调用的神秘面纱,通过生动形象的语言和比喻,让读者仿佛踏上了一段奇妙的旅程,从宏观到微观,逐步深入了解这两个关键组件如何协同工作,支撑起整个操作系统的运行。不同于传统的技术解析,本文将以故事化的方式,带领读者领略Linux内核的精妙设计与系统调用的魅力所在,即便是对技术细节不甚了解的读者也能轻松享受这次知识之旅。 ####
|
6天前
|
缓存 算法 安全
深入理解Linux操作系统的心脏:内核与系统调用####
【10月更文挑战第20天】 本文将带你探索Linux操作系统的核心——其强大的内核和高效的系统调用机制。通过深入浅出的解释,我们将揭示这些技术是如何协同工作以支撑起整个系统的运行,同时也会触及一些常见的误解和背后的哲学思想。无论你是开发者、系统管理员还是普通用户,了解这些基础知识都将有助于你更好地利用Linux的强大功能。 ####
14 1
|
7天前
|
缓存 编解码 监控
深入探索Linux内核调度机制的奥秘###
【10月更文挑战第19天】 本文旨在以通俗易懂的语言,深入浅出地剖析Linux操作系统内核中的进程调度机制,揭示其背后的设计哲学与实现策略。我们将从基础概念入手,逐步揭开Linux调度策略的神秘面纱,探讨其如何高效、公平地管理系统资源,以及这些机制对系统性能和用户体验的影响。通过本文,您将获得关于Linux调度机制的全新视角,理解其在日常计算中扮演的关键角色。 ###
27 1
|
8天前
|
运维 安全 Linux
Linux中传输文件文件夹的10个scp命令
【10月更文挑战第18天】本文详细介绍了10种利用scp命令在Linux系统中进行文件传输的方法,涵盖基础文件传输、使用密钥认证、复制整个目录、从远程主机复制文件、同时传输多个文件和目录、保持文件权限、跨多台远程主机传输、指定端口及显示传输进度等场景,旨在帮助用户在不同情况下高效安全地完成文件传输任务。
84 5
|
8天前
|
Linux
Linux系统之expr命令的基本使用
【10月更文挑战第18天】Linux系统之expr命令的基本使用
36 4
|
5天前
|
运维 监控 网络协议
|
6天前
|
监控 Linux Shell
|
9天前
|
Unix Linux
Linux | Rsync 命令:16 个实际示例(下)
Linux | Rsync 命令:16 个实际示例(下)
23 3
Linux | Rsync 命令:16 个实际示例(下)