非线性规划的概念

简介: 非线性规划的概念

在建立规划模型时,若目标函数中决策变量或者约束方程(不等式)中某些变量为非一次(不是线性),则称建立的数学模型为非线性规划模型。

上述模型为非线性规划的标准模型(目标最小化,所有约束都是大于等于),很多优化理论的推导和优化程序的编译都是按照这种模式展开。

可行解

若x1,x2满足上述条件[10],[11],[12],则称向量x=[x1,x2]T为上述非线规划的可行解。

例如:

其中x(1),x(4)不是此问题的可行解,而x(2),x(3)是可行解。

可行集(可行域)

称为非线性规划问题[5]的可行集(域)。

举例

【问题分析】

决策变量为x=(x1,x2)T。目标函数表示决策变量x=(x1,x2)T到点(2,1)T的距离的平方(体现为以(2,1)为圆心的圆周半径变化);

第一个约束是一条抛物线(开口朝左,x1为横轴)(注意等号)

第二个约束为一次不等式;同时决策变量非负。

1、画出图形

绘制约束曲线,标出可行域

2、绘制目标函数曲线

 

该问题的目标是在抛物线段ABCD上找一个点,使得这个点到(2,1)T的距离的平方最小(距离本身也是最小)。这样的点位于以(2,1)T为圆心的圆周上。由图示可知,点D到(2,1)T的距离最小。即D(4,1)T就是抛物线段ABCD上到点(2,1)T距离平方最小的点。

因为抛物线段ABCD上,B 左右的点到(2,1)T的距离都大于B到(2,1)T的距离;C左右的点到(2,1)T的距离都小于C到(2,1)T的距离,因此f(B)为局部极小值,f( C )称为局部极大值。相应地,f(D)称为全局最小值,f(A)称为全局最大值


相关文章
|
存储 供应链 算法
《数学模型(第五版)》学习笔记(2)第3章 简单的优化模型 第4章 数学规划模型
《数学模型(第五版)》学习笔记(2)第3章 简单的优化模型 第4章 数学规划模型
169 1
|
3月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
86 2
|
机器学习/深度学习 BI 决策智能
线性规划 (一) 线性规划的基本形式及各种概念
线性规划 (一) 线性规划的基本形式及各种概念
403 0
|
11月前
线性规划解的概念
线性规划解的概念
线性规划模型基本原理与编程实现
线性规划模型基本原理与编程实现
43 0
线性规划模型基本原理与编程实现
|
机器学习/深度学习
【离散数学】代数结构
1. 封闭性 2. 可交换 3. 可结合 4. 可分配 5. 吸收律 6. 等幂的 7. 幺元 8. 零元 9. 逆元 10. 广群 11. 半群 12. 子半群 13. 独异点 14. 群 15. 子群 16. 阿贝尔群(交换群) 17. 循环群 18. 陪集 19. 拉格朗日定理 20. 环 21. 整环 22. 域
184 0
【离散数学】代数结构
|
数据建模
图论相关概念
图论相关概念
128 0
凸优化理论基础3——凸集和凸锥重要例子
凸优化理论基础3——凸集和凸锥重要例子
942 0
凸优化理论基础3——凸集和凸锥重要例子
|
算法
【计算理论】图灵机 ( 非确定性图灵机 -> 确定性图灵机 | 模仿过程示例 | 算法的数学模型 )
【计算理论】图灵机 ( 非确定性图灵机 -> 确定性图灵机 | 模仿过程示例 | 算法的数学模型 )
349 0
【计算理论】图灵机 ( 非确定性图灵机 -> 确定性图灵机 | 模仿过程示例 | 算法的数学模型 )