C 语言的 互斥锁、自旋锁、原子操作

简介: C 语言的 互斥锁、自旋锁、原子操作

今天不整 GO 语言,我们来分享一下以前写的 C 代码,来看看 互斥锁,自旋锁和原子操作的 demo

互斥锁

临界区资源已经被1个线程占用,另一个线程过来访问临界资源的时候,会被CPU切换线程,不让运行后来的这个线程

适用于 锁住的内容多(例如红黑数的增加节点操作),切换线程的代价小于等待的代价

自旋锁

临界区资源已经被1个线程占用,另一个线程过来访问临界资源的时候,相当于是一个 while(1)

不断的查看这个资源是否可用,如果可用,就进去访问临界资源,如果不可用,则继续循环访问

适用于锁住的内容少,(例如就执行++操作),切换线程的代价大于等待的代价

原子操作

执行的操作完全不可分割,要么全部成功,要么全部失败

最好的方式就是适用原子操作

实操

需求场景:

1、用10个线程分别对 count 加 100000 次, 看看结果是否是 10*100000

  • main 函数中创建 10 个线程
  • 线程函数中调用 inc 做数据的增加
  • 分别使用 互斥锁,自旋锁,和原子操作,来进行控制
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#define PTHREAD_NUM 10
#define INFO  printf
pthread_mutex_t mutex;
pthread_spinlock_t spin;
int inc(int *v,int add)
{
  int old;
    //汇编,做一个原子操作
  __asm__ volatile(
    "lock;xaddl %2, %1;"
    :"=a" (old)
    :"m"(*v),"a"(add)
    :"cc","memory"
  );
  return old;
}
void * thread_callback(void *arg)
{
  int *count = (int *)arg;
  int i = 100000;
while(i--)
  {
  #if 0
//互斥锁
    pthread_mutex_lock(&mutex);
    (*count)++;
    pthread_mutex_unlock(&mutex);
  #elif 0
//自旋锁
    pthread_spin_lock(&spin);
    (*count)++;
    pthread_spin_unlock(&spin);
  #else
//原子操作
    inc(count,1);
  #endif
    usleep(1);
  }
}
int main()
{
  pthread_t thread[PTHREAD_NUM] = {0};
  pthread_mutex_init(&mutex,NULL);
  pthread_spin_init(&spin,0);
  int count  = 0;
  for(int i = 0;i<PTHREAD_NUM;i++){
    pthread_create(&thread[i],NULL,thread_callback,&count);
  }
  for(int i = 0;i<100;i++)
  {
    INFO("count == %d\n",count);
    sleep(1);
  }
  return 0;
}

如上代码还是很简单的,感兴趣的 xdm 可以自行运行,控制自己使用互斥锁,自旋锁或者是原子操作看看效果进行对比一下

2、mutex、lock、atomic 性能对比

思路还是和上面的思路类型,咱们可以通过下面的代码来实际初步看看 mutex、lock、atomic 各自的性能

//并发
//互斥锁mutex
//  如果获取不到资源会让出cpu
//  使用场景
//    共享区域执行的内容较多的情况
//自旋锁spinlock
//  如果获取不到资源,会原地自旋,忙等
//  使用场景
//    共享区域执行的内容较少的情况
//原子操作
//  不可分割
//  使用场景
//    做简单++、--操作
//
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <time.h>
#define MAX_PTHREAD 2
#define LOOP_LEN    1000000000
#define LOOP_ADD    10000
int count = 0;
pthread_mutex_t mutex;
pthread_spinlock_t spin;
typedef void *(*functhread)(void *arg);
void do_add(int num)
{
  int sum = 0;
  for(int i = 0;i<num;i++)
  {
    sum +=i;
  }
}
int atomic_add(int *v,int add)
{
  int old;
  __asm__ volatile(
    "lock;xaddl %2, %1;"
    :"=a" (old)
    :"m"(*v),"a"(add)
    :"cc","memory"
  );
  return old;
}
void * atomicthread(void *arg)
{
  for(int i  = 0;i<LOOP_LEN;i++){
    atomic_add(&count,1);
  }
}
void * spinthread(void *arg)
{
  for(int i  = 0;i<LOOP_LEN;i++){
    pthread_spin_lock(&spin);
    count++;
    //do_add(LOOP_ADD);
    pthread_spin_unlock(&spin);
  }
}
void * mutexthread(void *arg)
{
  for(int i  = 0;i<LOOP_LEN;i++){
    pthread_mutex_lock(&mutex);
    count++;
    //do_add(LOOP_ADD);
    pthread_mutex_unlock(&mutex);
  }
}
int test_lock(functhread thre,void * arg)
{
  clock_t start = clock();
  pthread_t tid[MAX_PTHREAD] = {0};
  for(int i = 0;i<MAX_PTHREAD;i++)
  {
  //创建线程
    int ret = pthread_create(&tid[i],NULL,thre,NULL);
    if(0 != ret)
    {
      printf("pthread create rror\n");
      return -1;
    }
  }
  for(int i = 0;i<MAX_PTHREAD;i++){
//回收线程
    pthread_join(tid[i],NULL);
  }
  clock_t end = clock();
  //printf("start  -- %ld\n",start);
  //printf("end  -- %ld\n",end);
  //printf("CLOCKS_PER_SEC  -- %ld\n",CLOCKS_PER_SEC);
  printf("spec lock is  -- %ld\n",(end - start)/CLOCKS_PER_SEC);
}
int main()
{
  pthread_mutex_init(&mutex,NULL);
  pthread_spin_init(&spin,0);
//测试spin
  count = 0;
  printf("use spin ------ \n");
  test_lock(spinthread,NULL);
  printf("count == %d\n",count);
//测试mutex
  count = 0;
  printf("use mutex ------ \n");
  test_lock(mutexthread,NULL);
  printf("count == %d\n",count);
//测试atomic
  count = 0;
  printf("use automic ------ \n");
  test_lock(atomicthread,NULL);
  printf("count == %d\n",count);
  return 0;
}

结果

通过上述结果,我们可以看到,加互斥锁,自旋锁,原子操作,数据都能如我所愿的累加正确,在时间上面他们还是有一定的差异:

自旋锁 和 互斥锁 在此处的案例性能差不多,但是原子操作相对就快了很多

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

好了,本次就到这里

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

相关文章
|
1月前
|
存储 算法 C语言
【C语言程序设计——函数】素数判定(头歌实践教学平台习题)【合集】
本内容介绍了编写一个判断素数的子函数的任务,涵盖循环控制与跳转语句、算术运算符(%)、以及素数的概念。任务要求在主函数中输入整数并输出是否为素数的信息。相关知识包括 `for` 和 `while` 循环、`break` 和 `continue` 语句、取余运算符 `%` 的使用及素数定义、分布规律和应用场景。编程要求根据提示补充代码,测试说明提供了输入输出示例,最后给出通关代码和测试结果。 任务核心:编写判断素数的子函数并在主函数中调用,涉及循环结构和条件判断。
62 23
|
1月前
|
算法 C语言
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】
本文档介绍了如何编写两个子函数,分别求任意两个整数的最大公约数和最小公倍数。内容涵盖循环控制与跳转语句的使用、最大公约数的求法(包括辗转相除法和更相减损术),以及基于最大公约数求最小公倍数的方法。通过示例代码和测试说明,帮助读者理解和实现相关算法。最终提供了完整的通关代码及测试结果,确保编程任务的成功完成。
66 15
|
1月前
|
C语言
【C语言程序设计——函数】亲密数判定(头歌实践教学平台习题)【合集】
本文介绍了通过编程实现打印3000以内的全部亲密数的任务。主要内容包括: 1. **任务描述**:实现函数打印3000以内的全部亲密数。 2. **相关知识**: - 循环控制和跳转语句(for、while循环,break、continue语句)的使用。 - 亲密数的概念及历史背景。 - 判断亲密数的方法:计算数A的因子和存于B,再计算B的因子和存于sum,最后比较sum与A是否相等。 3. **编程要求**:根据提示在指定区域内补充代码。 4. **测试说明**:平台对代码进行测试,预期输出如220和284是一组亲密数。 5. **通关代码**:提供了完整的C语言代码实现
60 24
|
1月前
|
存储 C语言
【C语言程序设计——函数】递归求斐波那契数列的前n项(头歌实践教学平台习题)【合集】
本关任务是编写递归函数求斐波那契数列的前n项。主要内容包括: 1. **递归的概念**:递归是一种函数直接或间接调用自身的编程技巧,通过“俄罗斯套娃”的方式解决问题。 2. **边界条件的确定**:边界条件是递归停止的条件,确保递归不会无限进行。例如,计算阶乘时,当n为0或1时返回1。 3. **循环控制与跳转语句**:介绍`for`、`while`循环及`break`、`continue`语句的使用方法。 编程要求是在右侧编辑器Begin--End之间补充代码,测试输入分别为3和5,预期输出为斐波那契数列的前几项。通关代码已给出,需确保正确实现递归逻辑并处理好边界条件,以避免栈溢出或结果
63 16
|
1月前
|
存储 编译器 C语言
【C语言程序设计——函数】分数数列求和2(头歌实践教学平台习题)【合集】
函数首部:按照 C 语言语法,函数的定义首部表明这是一个自定义函数,函数名为fun,它接收一个整型参数n,用于指定要求阶乘的那个数,并且函数的返回值类型为float(在实际中如果阶乘结果数值较大,用float可能会有精度损失,也可以考虑使用double等更合适的数据类型,这里以float为例)。例如:// 函数体代码将放在这里函数体内部变量定义:在函数体中,首先需要定义一些变量来辅助完成阶乘的计算。比如需要定义一个变量(通常为float或double类型,这里假设用float。
36 3
|
1月前
|
存储 算法 安全
【C语言程序设计——函数】分数数列求和1(头歌实践教学平台习题)【合集】
if 语句是最基础的形式,当条件为真时执行其内部的语句块;switch 语句则适用于针对一个表达式的多个固定值进行判断,根据表达式的值与各个 case 后的常量值匹配情况,执行相应 case 分支下的语句,直到遇到 break 语句跳出 switch 结构,若没有匹配值则执行 default 分支(可选)。例如,在判断一个数是否大于 10 的场景中,条件表达式为 “num> 10”,这里的 “num” 是程序中的变量,通过比较其值与 10 的大小关系来确定条件的真假。常量的值必须是唯一的,且在同一个。
19 2
|
1月前
|
存储 编译器 C语言
【C语言程序设计——函数】回文数判定(头歌实践教学平台习题)【合集】
算术运算于 C 语言仿若精密 “齿轮组”,驱动着数值处理流程。编写函数求区间[100,500]中所有的回文数,要求每行打印10个数。根据提示在右侧编辑器Begin--End之间的区域内补充必要的代码。如果操作数是浮点数,在 C 语言中是不允许直接进行。的结果是 -1,因为 -7 除以 3 商为 -2,余数为 -1;注意:每一个数据输出格式为 printf("%4d", i);的结果是 1,因为 7 除以 -3 商为 -2,余数为 1。取余运算要求两个操作数必须是整数类型,包括。开始你的任务吧,祝你成功!
51 1
|
2月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
92 10
|
2月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
68 9
|
2月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
62 8

热门文章

最新文章