软件测试/人工智能|一文告诉你ChatGPT原理与架构

简介: 软件测试/人工智能|一文告诉你ChatGPT原理与架构

image.png

简介

ChatGPT是今年最火的互联网应用,ChatGPT给我们的工作和生活带来了巨大便利,帮我们写文案,帮我们写代码等,但是当我们在于ChatGPT对话时,我们是否有想过,这么强大的一个工具,它背后的技术原理是什么?它的技术架构是怎样的?本文就告诉大家ChatGPT的原理与架构。

ChatGPT的主要特点

OpenAI使用 RLHF(Reinforcement Learning from Human Feedbac,人类反馈强化学习) 技术对 ChatGPT 进行了训练,且加入了更多人工监督进行微调。

此外,ChatGPT 还具有以下特征:

  • 可以主动承认自身错误。
  • ChatGPT 可以质疑不正确的问题。
  • ChatGPT会承认自己在某些专业领域的无知
  • 支持连续对话

ChatGPT的原理

  1. Transformer架构

ChatGPT建立在Transformer架构之上。这个架构的核心思想是自注意力机制(Self-Attention),使模型能够在处理输入时将不同位置的词或标记联系起来,并理解它们之间的关系。这种机制使得模型在处理长文本时能够更好地捕捉全局信息,而不是仅依赖于局部片段。

  1. 训练数据

ChatGPT通过海量的文本数据进行训练。这些数据来自于互联网上的各种来源,包括文章、书籍、新闻、论坛帖子等等。模型通过大量文本数据学习语言的规律、语法、语义和逻辑,从而能够生成类似人类语言的文本。

  1. Fine-tuning

在训练完成后,模型可能会通过Fine-tuning进一步优化以适应特定任务。Fine-tuning是指在特定领域或任务的数据集上对模型进行微调,使其在特定任务上表现更佳。比如,ChatGPT可以通过Fine-tuning来更好地执行客户服务、创作文学作品或者执行特定类型的对话。

  1. 生成文本

ChatGPT的核心能力是生成连贯、合乎逻辑的文本。当我们提出问题或输入一段文字时,模型会基于其训练得到的知识和理解,生成下一个可能的文本。这种生成是基于对语言的理解和模式识别。

ChatGPT技术架构

image.png

这个架构图展示了Transformer模型的基本组成部分,比如输入嵌入(Input Embeddings)、多头自注意力层(Multi-Head Self-Attention Layers)、前馈神经网络(Feedforward Neural Networks)等等。每个组件都有其特定的功能,共同构建了ChatGPT这样一个功能强大的语言模型。

总结

本文主要介绍了ChatGPT的原理和架构图展示了深度学习模型如何通过训练和优化来理解和生成人类语言,为我们提供了与机器进行自然交流的可能性。ChatGPT还在不断的进行优化,随着功能的逐渐变强,未来ChatGPT也有可能会取代搜索引擎。希望本文能够对大家了解ChatGPT的原理提供帮助。

image.png

相关文章
|
3月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
118 0
园区导航系统技术架构实现与原理解构
|
4月前
|
存储 消息中间件 canal
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
5月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
1978 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
6月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
870 62
|
5月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
141 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
5月前
|
Java 开发者 Spring
Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
214 9
|
7月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
9月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
253 21