Prometheus监控Spring Boot应用,自定义应用监控指标

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: Prometheus监控Spring Boot应用,自定义应用监控指标

使用Actuator,Micrometer,Prometheus和Grafana监控Spring Boot应用程序,自定义应用监控指标。

应用程序在生产环境中运行时,监控其运行状况是非常必要的。通过实时了解应用程序的运行状况,才能在问题出现之前得到警告,也可以通监控应用系统的运行状况,优化性能,提高运行效率。

一、监控Spring Boot应用

下面我们以Spring Boot 为例,演示Prometheus如何监控应用系统。

1.1 项目环境:

Spring Boot 2.3.7.release

micrometer-registry-prometheus 1.5.9

需要注意Spring Boot 和 micrometer的版本号。不同的micrometer版本支持的Spring Boot 版本也不相同。

1.2 Spring Boot集成 Micrometer

step1:首先创建Spring Boot项目,首先添加依赖如下:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-actuator</artifactId>
    </dependency>
    <dependency>
        <groupId>io.micrometer</groupId>
        <artifactId>micrometer-registry-prometheus</artifactId>
        <version>1.5.9</version>
    </dependency>
</dependencies>

这里引入了 io.micrometer 的 micrometer-registry-prometheus 依赖以及 spring-boot-starter-actuator 依赖,因为该包对 Prometheus 进行了封装,可以很方便的集成到 Spring Boot 工程中。

需要注意Spring Boot 和 micrometer的版本号。不同的micrometer版本支持的Spring Boot 版本也不相同。

step2:修改配置文件,打开Actuator监控端点

在 application.yml 中配置如下:

spring:
  application:
    name: PrometheusApp
#Prometheus springboot监控配置
management:
  endpoints:
    web:
      exposure:
        include: '*'
  metrics:
    export:
      prometheus:
        enabled: true
    tags:
      application: ${spring.application.name} # 暴露的数据中添加application label

上面的配置中, include=* 配置为开启 Actuator 服务,Spring Boot Actuator 自带了一个/actuator/Prometheus 的监控端点供给Prometheus 抓取数据。不过默认该服务是关闭的,所以,使用该配置将打开所有的 Actuator 服务。

step3:最后,启动服务,然后在浏览器访问 http://10.2.1.159:8080/actuator/prometheus ,就可以看到服务的一系列不同类型 metrics 信息,例如 http_server_requests_seconds summary、jvm_memory_used_bytes gauge、jvm_gc_memory_promoted_bytes_total counter 等等。

到此,Spring Boot 工程集成 Micrometer 就已经完成,接下里就要与 Prometheus 进行集成了。

1.3 将应用添加到Prometheus

前面Spring Boot应用已经启动成功,并暴露了/actuator/Prometheus的监控端点。接下来我们将此应用添加到Prometheus。

step1:首先,修改 Prometheus 的配置文件 prometheus.yml ,添加上边启动的服务地址来执行监控。vim /usr/local/etc/prometheus.yml 。具体配置如下:

global:
  scrape_interval: 15s
scrape_configs:
  - job_name: "prometheus"
    # metrics_path defaults to '/metrics'
    # scheme defaults to 'http'.
    static_configs:
      - targets: ["localhost:9090"]
  # 采集node exporter监控数据
  - job_name: 'node'
    static_configs:
      - targets: ['10.2.1.231:9527']
  - job_name: 'prometheusapp'
    metrics_path: '/actuator/prometheus'
    static_configs:
      - targets: ['10.2.1.159:8080']

上面的prometheusapp 就是前面创建的Spring Boot 应用程序,也就是 Prometheus 需要监控的服务地址。

step2:然后,重启 Prometheus 服务,查看 Prometheus UI 界面确认 Target 是否添加成功。

我们也可以在 Graph 页面执行一个简单的查询,也是获取 PrometheusApp服务的相关性能指标值。

二、使用 Grafana Dashboard 展示应用数据

前面我们已经在Prometheus正常监控Spring Boot应用的JVM性能指标数据,接下来,我们配置 Grafana Dashboard 来优雅直观的展示出来这些监控指标。

2.1 下载Grafana模板

之前介绍过Grafana 使用Dashboard 模板展示Prometheus的数据,这里就不再重复了,直接在https://grafana.com/dashboards 下载Spring Boot的模板(这里使用的是编号4701)。

2.2 导入模板

下载成功后直接在Dashboards | Import 将json模板导入到Grafana 即可。

2.3 查看应用信息

导入完毕后,就可以看到 JVM的各项监控指标,如果有多个应用,可以通过Application选择我们想要查看的应用即可。

三、自定义监控指标

前面我们在Spring Boot项目中集成Actuator和Micrometer实现了Spring Boot应用监控,基本上覆盖 JVM 各个层间的参数指标,并且配合 Grafana Dashboard 模板基本可以满足我们日常对Spring Boot应用的监控。

但是,对于核心业务改是否也能够监控它们的执行情况呢?答案是肯定的,Micrometer支持自定义监控指标,实现业务方面的数据监控。例如统计访问某一个 API 接口的请求数,统计实时在线人数、统计实时接口响应时间等。

接下来,我们以监控所有API请求次数为例,演示如何自定义监控指标并展示到Grafana 。

3.1 添加指标统计

step1:首先,在之前的Spring Boot项目中,创建CustomMetricsController 控制器,具体示例代码如下:

@RestController
@RequestMapping("/custom/metrics")
public class CustomMetricsController {
    @Autowired
    private MeterRegistry meterRegistry;
    /**
     * 订单请求测试
     */
    @GetMapping("/order/{appId}")
    public String orderTest(@PathVariable("appId") String appId) {
        Counter.builder("metrics.request.count").tags("apiCode", "order").register(meterRegistry).increment();
        return "order请求成功:" +appId ;
    }
    /**
     * 产品请求测试
     */
    @GetMapping("/product/{appId}")
    public String productTest(@PathVariable("appId") String appId) {
        Counter.builder("metrics.request.count").tags("apiCode", "product").register(meterRegistry).increment();
        return "product请求成功:" +appId ;
    }
}

如上所示,使用Counter 计数器定义了自定义指标参数:metrics_request_count,来统计相关接口的请求次数。这里只是测试,所以直接在Controller类中进行统计。实际项目项目中,应该是使用AOP,或是拦截器的方式统计所有接口的请求信息,减少这种非关键代码的侵入性。

step2: 验证测试,重新启动Spring Boot 应用。分别访问:http://10.2.1.159:8080/custom/metrics/order/{appId}http://10.2.1.159:8080/custom/metrics/product/{appId} 接口,然后在 Promtheus 中查看自定义的指标数据:metrics_request_count_total

如上图所示,我们自定义的监控指标已经在Prometheus中显示了,说明我们在应用中配置的自定义监控指标已经成功。

3.2 创建Grafana数据面板

接下来,我们在 Grafana Dashboard展示我们自定义的监控指标。其实也非常简单,创建一个新的数据面板Panel 并添加 Query 查询,相关的监控指标就图形化展示出来了。接下来演示在Grafana上创建数据面板。

step1:首先,页面的右上角的Add panel | Add a new Panel,添加一个 Panel,并命名为:统计接口请求次数。可以选择选择想要展示的图形,如:连线图、柱状图等。

step2:然后,在panel的下方增加 Query 查询,选择数据源为之前定义的Prometheus-1,指标选择之前自定义的指标数据:metrics_request_count_total,点击applay 保存之后,返回首页就可以看到刚添加的 panel。具体如下图所示:

如上图所示,上面我们新增加的panel中成功显示了我们自定义的监控数据。继续请求之前的应用接口,数据会正常刷新。说明Grafana上的指标数据展示配置成功。


相关文章
|
2月前
|
SQL Java 数据库连接
Spring Data JPA 技术深度解析与应用指南
本文档全面介绍 Spring Data JPA 的核心概念、技术原理和实际应用。作为 Spring 生态系统中数据访问层的关键组件,Spring Data JPA 极大简化了 Java 持久层开发。本文将深入探讨其架构设计、核心接口、查询派生机制、事务管理以及与 Spring 框架的集成方式,并通过实际示例展示如何高效地使用这一技术。本文档约1500字,适合有一定 Spring 和 JPA 基础的开发者阅读。
332 0
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
689 3
|
1月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
126 8
|
2月前
|
Prometheus 监控 Java
日志收集和Spring 微服务监控的最佳实践
在微服务架构中,日志记录与监控对系统稳定性、问题排查和性能优化至关重要。本文介绍了在 Spring 微服务中实现高效日志记录与监控的最佳实践,涵盖日志级别选择、结构化日志、集中记录、服务ID跟踪、上下文信息添加、日志轮转,以及使用 Spring Boot Actuator、Micrometer、Prometheus、Grafana、ELK 堆栈等工具进行监控与可视化。通过这些方法,可提升系统的可观测性与运维效率。
320 1
日志收集和Spring 微服务监控的最佳实践
|
3月前
|
Java 应用服务中间件 开发者
Spring Boot 技术详解与应用实践
本文档旨在全面介绍 Spring Boot 这一广泛应用于现代企业级应用开发的框架。内容将涵盖 Spring Boot 的核心概念、核心特性、项目自动生成与结构解析、基础功能实现(如 RESTful API、数据访问)、配置管理以及最终的构建与部署。通过本文档,读者将能够理解 Spring Boot 如何简化 Spring 应用的初始搭建和开发过程,并掌握其基本使用方法。
338 2
|
3月前
|
人工智能 监控 安全
如何快速上手【Spring AOP】?核心应用实战(上篇)
哈喽大家好吖~欢迎来到Spring AOP系列教程的上篇 - 应用篇。在本篇,我们将专注于Spring AOP的实际应用,通过具体的代码示例和场景分析,帮助大家掌握AOP的使用方法和技巧。而在后续的下篇中,我们将深入探讨Spring AOP的实现原理和底层机制。 AOP(Aspect-Oriented Programming,面向切面编程)是Spring框架中的核心特性之一,它能够帮助我们解决横切关注点(如日志记录、性能统计、安全控制、事务管理等)的问题,提高代码的模块化程度和复用性。
|
3月前
|
安全 算法 Java
在Spring Boot中应用Jasypt以加密配置信息。
通过以上步骤,可以在Spring Boot应用中有效地利用Jasypt对配置信息进行加密,这样即使配置文件被泄露,其中的敏感信息也不会直接暴露给攻击者。这是一种在不牺牲操作复杂度的情况下提升应用安全性的简便方法。
984 10
|
4月前
|
安全 Java Nacos
0代码改动实现Spring应用数据库帐密自动轮转
Nacos作为国内被广泛使用的配置中心,已经成为应用侧的基础设施产品,近年来安全问题被更多关注,这是中国国内软件行业逐渐迈向成熟的标志,也是必经之路,Nacos提供配置加密存储-运行时轮转的核心安全能力,将在应用安全领域承担更多职责。
|
SQL 运维 监控
关系型数据库性能监控工具
【5月更文挑战第21天】
321 2
|
监控 Oracle 数据可视化
深度解析JVM性能监控工具:推荐与详细用法
深度解析JVM性能监控工具:推荐与详细用法
1674 0