微服务轮子项目(30) -数据库分库分表、部署上线方式(上)

简介: 微服务轮子项目(30) -数据库分库分表、部署上线方式

1. 数据库瓶颈

不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

IO瓶颈:

  • 磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
  • 网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。

CPU瓶颈:

  • SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
  • 单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。

2. 分库分表

2.1 水平分库

概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

结果:

  • 每个库的结构都一样;
  • 每个库的数据都不一样,没有交集;
  • 所有库的并集是全量数据;

场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。

分析:库多了,io和cpu的压力自然可以成倍缓解。

2.2 水平分表

概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。

结果:

  • 每个表的结构都一样;
  • 每个表的数据都不一样,没有交集;
  • 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。

分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

2.3 垂直分库

概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。

结果:

  • 每个库的结构都不一样;
  • 每个库的数据也不一样,没有交集;
  • 所有库的并集是全量数据;

场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。

分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

2.4 垂直分表

概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。

结果:

  • 每个表的结构都不一样;
  • 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
  • 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。

分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

3. 分库分表工具

  • sharding-sphere:jar、proxy
  • TDDL:jar
  • Mycat:proxy
  • Atlas:proxy

工具的利弊,请自行调研,官网和社区优先

4. 分库分表步骤

  1. 根据容量(当前容量和增长量)评估分库或分表个数
  2. 选key(均匀)
  3. 分表规则(hash或range等)
  4. 执行(一般双写)
  5. 扩容问题(尽量减少数据的移动)。

5. 分库分表问题

5.1 非partition key的查询问题

非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)

1. 端上除了partition key只有一个非partition key作为条件查询:

映射法:

写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。

2.端上除了partition key不止一个非partition key作为条件查询

映射法:

冗余法: 顾名思义就是同一个表分别用不同的partition key来分

按照order_idbuyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。有其他好的办法吗?改变技术栈呢?

3.后台除了partition key还有各种非partition key组合条件查询

NoSQL法:

冗余法:

5.2 非partition key跨库跨表分页查询问题

partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)

用NoSQL法解决(ES、Hive等)

另外这种很多批量分页且条件多样的查询通常为运营端(后台用户)用于查询报表或者运营数据而用的,这类查询计算量大,返回数据量大,对数据库的性能消耗较高,这类业务最好采用前台与后台分离的方案

后台业务需求则抽取独立的web/service/db来支持,解除系统之间的耦合,对于业务复杂、并发量低、无需高可用、能接受一定延时的后台业务:

  • 可以通过MQ或者线下异步(binlog)同步数据,牺牲一些数据的实时性
  • 可以使用更契合大量数据允许接受更高延时的“索引外置”或者“HIVE”的设计方案
目录
相关文章
|
2月前
|
存储 监控 安全
数据库多实例的部署与配置方法
【10月更文挑战第23天】数据库多实例的部署和配置需要综合考虑多个因素,包括硬件资源、软件设置、性能优化、安全保障等。通过合理的部署和配置,可以充分发挥多实例的优势,提高数据库系统的运行效率和可靠性。在实际操作中,要不断总结经验,根据实际情况进行调整和优化,以适应不断变化的业务需求。
|
3月前
|
Kubernetes 持续交付 Docker
利用 Docker 和 Kubernetes 实现微服务部署
【10月更文挑战第2天】利用 Docker 和 Kubernetes 实现微服务部署
|
27天前
|
存储 数据管理 关系型数据库
数据库分库分表的原因?
分库分表通过减少单库单表负担来提升查询性能。垂直切分按业务耦合度将表或列分布于不同库或表中,减少数据量,优化性能。水平切分则按数据逻辑关系将表分散至多库多表,减小单表数据量,实现分布式处理。选择方式需根据具体需求决定。
56 19
|
23天前
|
SQL 弹性计算 安全
在云上轻松部署达梦数据库
达梦数据库(DM Database)是达梦数据库有限公司开发的关系型数据库管理系统,广泛应用于政府、金融、能源等行业。它具备高性能、高安全、兼容性强、易管理等特点,支持多种操作系统,适用于关键业务系统、政务系统及大数据处理等场景。在阿里云上,可通过一键部署快速使用达梦数据库DM8。
|
2月前
|
SQL 关系型数据库 数据库
国产数据实战之docker部署MyWebSQL数据库管理工具
【10月更文挑战第23天】国产数据实战之docker部署MyWebSQL数据库管理工具
158 4
国产数据实战之docker部署MyWebSQL数据库管理工具
|
12天前
|
存储 消息中间件 SQL
微服务改造血泪史:数据库拆分踩过的那些坑!
本文复盘了传统项目改造成微服务架构时,数据库拆分过程中遇到的问题。主要问题包括:1. 数据库拆分过细,导致跨服务调用频繁,破坏服务独立性;2. 数据一致性难以保证,分布式事务管理复杂;3. 跨服务查询影响性能,复杂查询难以实现。初次改造时应避免过度拆分,逐步演进架构。
27 0
|
2月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
2月前
|
监控 安全 持续交付
构建高效的微服务架构:从设计到部署
构建高效的微服务架构:从设计到部署
25 1
|
2月前
|
Docker 微服务 容器
使用Docker Compose实现微服务架构的快速部署
使用Docker Compose实现微服务架构的快速部署
72 1
|
2月前
|
安全 Nacos 数据库
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改。本文详细探讨了这一问题的原因及解决方案,包括限制公网访问、使用HTTPS、强化数据库安全、启用访问控制、监控和审计等步骤,帮助开发者确保服务的安全运行。
67 3

热门文章

最新文章