高效调试与分析:利用ftrace进行Linux内核追踪(下)

简介: 高效调试与分析:利用ftrace进行Linux内核追踪

四、案例分析

4.1案例:Function trace

  • function默认会记录当前运行过程中的所有函数;
  • 如果只想跟踪某个进程,可以使用set_ftrace_pid;
  • 如果只想跟踪某个函数,可以使用set_ftrace_filter;

(0)关闭tracer

echo 0 > tracing_on
#清空打印
echo > trace

(1)设置类型:设current_tracer 类型为 function

echo blk_update_request > set_ftrace_filter

设置不跟踪指定函数;

echo  > set_ftrace_filter
echo blk_update_request >  set_ftrace_notrace

还可以用通配符"

#'*match*':匹配所有包含match的函数;
echo 'hrtimer_*' >> set_ftrace_filter  #过滤所有以"hrtimer_"开头的函数

还可以做基于模块的过滤:例如,过滤 ext4 module 的 write* 函数

#控制范式:<function>:<command>:<parameter>
echo 'write*:mod:ext4' > set_ftrace_filter

感叹号用来移除某个函数,把多个组合过滤条件的某一个去掉:

echo '!ip_rcv' >> set_ftrace_filter

遇到 __schedule_bug 函数后关闭 trace

# echo '__schedule_bug:traceoff' > set_ftrace_filter

(3)打开trace开关,开始 trace

# echo 1 > tracing_on

(4)提取trace结果

[root@myQEMU tracing]# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 6/6   #P:4
#
#                                _-----=> irqs-off
#                               / _----=> need-resched
#                              | / _---=> hardirq/softirq
#                              || / _--=> preempt-depth
#                              ||| /     delay
#           TASK-PID     CPU#  ||||   TIMESTAMP  FUNCTION
#              | |         |   ||||      |         |
          <idle>-0       [001] ..s.   229.298724: blk_update_request <-blk_mq_end_request
          <idle>-0       [001] ..s.   229.316890: blk_update_request <-blk_mq_end_request
          <idle>-0       [001] ..s.   229.317916: blk_update_request <-blk_mq_end_request
          <idle>-0       [001] ..s.   229.325217: blk_update_request <-blk_mq_end_request
          <idle>-0       [001] d.s.   229.325280: blk_update_request <-blk_mq_end_request
            sync-620     [001] ..s.   229.330068: blk_update_request <-blk_mq_end_request
[root@myQEMU tracing]#

从 trace 信息我们可以获取很多重要信息:

  • 进程信息,TASK-PID
  • 进程运行的 CPU
  • 执行函数时的系统状态,包括中断,抢占等状态信息
  • 执行函数的时间戳

function_graph使用方法和function类似,但可以更清晰的展示函数调用关系;

开启堆栈调用:可以跟踪函数被调用流程

[root@myQEMU tracing]# echo 1 > options/func_stack_trace 
[root@myQEMU tracing]# cat /cpu.info 
[root@myQEMU tracing]# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 18/18   #P:4
#
#                                _-----=> irqs-off
#                               / _----=> need-resched
#                              | / _---=> hardirq/softirq
#                              || / _--=> preempt-depth
#                              ||| /     delay
#           TASK-PID     CPU#  ||||   TIMESTAMP  FUNCTION
#              | |         |   ||||      |         |
             cat-646     [000] ..s.   548.454890: blk_update_request <-blk_mq_end_request
             cat-646     [000] ..s.   548.454915: <stack trace>
 => blk_update_request
 => blk_mq_end_request
 => virtblk_request_done
 => blk_complete_reqs
 => blk_done_softirq
 => __do_softirq
 => irq_exit
 => __handle_domain_irq
 => gic_handle_irq
 => el1_irq
 => get_page_from_freelist
 => __alloc_pages
 => page_cache_ra_unbounded
 => do_page_cache_ra
 => filemap_fault
 => ext4_filemap_fault
 => __do_fault
 => __handle_mm_fault
 => handle_mm_fault
 => do_page_fault
 => do_translation_fault
 => do_mem_abort
 => el0_ia
 => el0_sync_handler
 => el0_sync

4.2案例:function_graph

使用方法和function类似,但可以更清晰的展示函数调用关系;

开启堆栈调用,可以查看函数调用子函数堆栈

echo blk_update_request > set_graph_function 
echo function_graph > current_tracer 
echo 1 > options/func_stack_trace 
echo 1 > tracing_on 
cat /cpu.info

查看trace

[root@myQEMU home]# cat /tracing/trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |
 0) + 24.368 us   |      start_backtrace();
 0)   4.336 us    |      start_backtrace();
 0)               |    blk_update_request() {
 0)   3.200 us    |      start_backtrace();
 0)   3.152 us    |      start_backtrace();
 0) + 68.576 us   |    }
 0)               |    blk_update_request() {
 0)   4.192 us    |      bio_advance();
 0)               |      bio_endio() {
 0)               |        submit_bio_wait_endio() {
 0)               |          complete() {
 0)               |            swake_up_locked() {
 0)               |              swake_up_locked.part.0() {
 0)               |                wake_up_process() {
 0)               |                  try_to_wake_up() {
 0)               |                    select_task_rq_fair() {
 0)   3.808 us    |                      available_idle_cpu();
 0)   3.856 us    |                      rcu_read_unlock_strict();
 0) + 23.696 us   |                    }
 0)   3.968 us    |                    ttwu_queue_wakelist();
 0)   4.960 us    |                    update_rq_clock.part.0();
 0)               |                    ttwu_do_activate.isra.0() {
 0)               |                      enqueue_task_fair() {
 0)               |                        update_curr() {
 0)   4.064 us    |                          __calc_delta();
 0)   4.080 us    |                          update_min_vruntime();
 0)   4.192 us    |                          rcu_read_unlock_strict();
 0) + 31.056 us   |                        }
 0)   5.104 us    |                        __update_load_avg_se();
 0)               |                        __update_load_avg_cfs_rq() {
 0)   4.208 us    |                          __accumulate_pelt_segments();
 0) + 13.840 us   |                        }
 0)   4.544 us    |                        __enqueue_entity();
 0) + 77.328 us   |                      }
 0)               |                      ttwu_do_wakeup.isra.0() {
 0)               |                        check_preempt_curr() {
 0)               |                          check_preempt_wakeup() {
 0)   4.688 us    |                            update_curr();
 0)   4.640 us    |                            wakeup_preempt_entity.isra.0();
 0) + 23.616 us   |                          }
 0) + 32.976 us   |                        }
 0) + 50.688 us   |                      }
 0) ! 141.648 us  |                    }
 0) ! 198.064 us  |                  }
 0) ! 206.528 us  |                }
 0) ! 215.072 us  |              }
 0) ! 223.376 us  |            }
 0) ! 232.320 us  |          }
 0) ! 240.960 us  |        }
 0) ! 250.400 us  |      }
 0) ! 269.840 us  |    }
[root@myQEMU tracing]#

小技巧:用vim插件Documentation/trace/function-graph-fold.vim 打开,可以方便折叠函数方便查看,za(展开)/zc(折叠)

vim ft_graph.log  -S Documentation/trace/function-graph-fold.vim 
            # tracer: function_graph
            #
            # CPU  DURATION                  FUNCTION CALLS
            # |     |   |                     |   |   |   |
             0) + 24.368 us   |      start_backtrace();
             0)   4.336 us    |      start_backtrace();
+            0)               |    blk_update_request() {----------------------------------------------------------------------------------------------------
-            0)               |    blk_update_request() {
|            0)   4.192 us    |      bio_advance();
|-           0)               |      bio_endio() {
||-          0)               |        submit_bio_wait_endio() {
|||-         0)               |          complete() {
||||+        0)               |            swake_up_locked() {-----------------------------------------------------------------------------------------------
||||         0) ! 232.320 us  |          }
|||          0) ! 240.960 us  |        }
||           0) ! 250.400 us  |      }
|            0) ! 269.840 us  |    }

4.3案例:事件 trace

Ftrace的跟踪机制主要有两种:函数和tracepoint。

函数,案例1已经做了介绍;tracepoint,可以理解为linux内核的占位符号,tracepoint可以输出开发者想要的参数,局部变量等。类似于C语言的#if DEBUG部分,不开启的话,不占用任何系统开销;

内核里常遇到以"trace_"开头的函数,比如CFS调度器里de update_curr()函数

static void update_curr(struct cfs_rq *cfs_rq)
{
  ...
  update_min_vruntime(cfs_rq);
  if (entity_is_task(curr)) {
    struct task_struct *curtask = task_of(curr);
    trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  }
  ...
}

update_curr()函数使用了一个sched_stat_runtime的tracepoint, 可以在available_events看到;

查询系统支持的事件:

cat available_events  |grep sched_stat_runtime
sched:sched_stat_runtime

操作过程:

echo 0 > tracing_on
echo > trace
echo  sched:sched_stat_runtime > set_event
echo 1 > tracing_on
#或者直接进入时间目录,等价操作:
cd /tracing/events/sched/sched_switch
echo 1 enable
cat /tracing/trace

格式解析:

[root@myQEMU sched_stat_runtime]# cat format 
name: sched_stat_runtime
ID: 208
format:
        field:unsigned short common_type;       offset:0;       size:2; signed:0;
        field:unsigned char common_flags;       offset:2;       size:1; signed:0;
        field:unsigned char common_preempt_count;       offset:3;       size:1; signed:0;
        field:int common_pid;   offset:4;       size:4; signed:1;
        field:char comm[16];    offset:8;       size:16;        signed:0;
        field:pid_t pid;        offset:24;      size:4; signed:1;
        field:u64 runtime;      offset:32;      size:8; signed:0;
        field:u64 vruntime;     offset:40;      size:8; signed:0;
print fmt: "comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", REC->comm, REC->pid, (unsigned long long)REC->runtime, (unsigned long long)REC->vruntime
[root@myQEMU sched_stat_runtime]#

sched_stat_runtime这个tracepoint有八个域,前4个是通用域,后4个是tracepoint支持域;

cd events/sched/sched_stat_runtime
 echo 'comm ~ "sh*"' > filter  ///跟踪所有sh开头的进程
 130 echo 'pid == 2288' >> filter ///跟踪PID=2288的进程

支持类似C语言的表达式对时间进行过滤。

[root@myQEMU tracing]# cat trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=3255632 [ns] vruntime=110771356247804 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=307728 [ns] vruntime=110771356555532 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=359392 [ns] vruntime=110771356914924 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=635824 [ns] vruntime=110771357550748 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=976800 [ns] vruntime=110771358527548 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=681568 [ns] vruntime=110771359209116 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=896000 [ns] vruntime=110771360105116 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=652272 [ns] vruntime=110771360757388 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=795152 [ns] vruntime=110771361552540 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=739952 [ns] vruntime=110771362292492 [ns] */
 0)               |  /* sched_stat_runtime: comm=sh pid=2288 runtime=812624 [ns] vruntime=110771363105116 [ns] */
 0)

添加一个事件

内核各个子系统已经有大量的tracepoint,如果不够,还可以手工添加一个;

在include/trace/events/sched.h添加一个sched_stat_my_runtime的tracepoint内核提供了宏来方便添加;

DECLARE_EVENT_CLASS(sched_stat_my_runtime,
 TP_PROTO(struct task_struct *tsk, u64 vruntime),
 TP_ARGS(tsk, vruntime),
 TP_STRUCT__entry(
   __array( char,  comm,   TASK_COMM_LEN   )
   __field( pid_t, pid     )
   __field( u64,   vruntime      )
 ),
 TP_fast_assign(
   memcpy(__entry-&gt;comm, tsk-&gt;comm, TASK_COMM_LEN);
   __entry-&gt;pid     = tsk-&gt;pid;
   __entry-&gt;vruntime  = vruntime;
 ),
 TP_printk(&quot;comm=%s pid=%d  minvruntime=%Lu [ns]&quot;,
     __entry-&gt;comm, __entry-&gt;pid,
     (unsigned long long)__entry-&gt;vruntime)
);
DEFINE_EVENT(sched_stat_my_runtime, sched_stat_my_runtime,
    TP_PROTO(struct task_struct *tsk, u64 vruntime),
    TP_ARGS(tsk, vruntime));
 [USER@HOSTNAME tracing]# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 239/239   #P:1
#
#                                _-----=&gt; irqs-off
#                               / _----=&gt; need-resched
#                              | / _---=&gt; hardirq/softirq
#                              || / _--=&gt; preempt-depth
#                              ||| /     delay
#           TASK-PID     CPU#  ||||   TIMESTAMP  FUNCTION
#              | |         |   ||||      |         |
              sh-2287    [000] d...   263.524575: sched_stat_my_runtime: comm=sh pid=2287  minvruntime=5762812735127 [ns]
       rcu_sched-11      [000] d...   263.526249: sched_stat_my_runtime: comm=rcu_sched pid=11  minvruntime=5762812735127 [ns]
       rcu_sched-11      [000] d...   263.530214: sched_stat_my_runtime: comm=rcu_sched pid=11  minvruntime=5762812735127 [ns]
     kworker/0:1-18      [000] d...   263.978131: sched_stat_my_runtime: comm=kworker/0:1 pid=18  minvruntime=5762812735127 [ns]
      kcompactd0-287     [000] d...   264.010218: sched_stat_my_runtime: comm=kcompactd0 pid=287  minvruntime=5762812735127 [ns]
    kworker/u2:4-255     [000] d...   264.313158: sched_stat_my_runtime: comm=kworker/u2:4 pid=255  minvruntime=5762812735127 [ns]
    kworker/u2:4-255     [000] d...   264.313242: sched_stat_my_runtime: comm=kworker/u2:4 pid=255  minvruntime=5762812735127 [ns]
              sh-2287    [000] d.h.   264.313821: sched_stat_my_runtime: comm=sh pid=2287  minvruntime=5762813304551 [ns]
              sh-2287    [000] d...   264.314023: sched_stat_my_runtime: comm=sh pid=2287  minvruntime=5762813514503 [ns]
    kworker/u2:4-255     [000] d...   264.393391: sched_stat_my_runtime: comm=kworker/u2:4 pid=255  minvruntime=5762813514503 [ns]

除了DEFINE_EVENT,还可以使用DEFINE_EVENT_CONDITION()定义一个带条件的tracepoint.

如果要定义多个格式相同的tracepoint,可以用DEFINE_EVENT_CLASS()减少代码量;

注:内核提供了一个tracepoint的例子,samples/trace_events/目录中;可以配置CONFIG_samples,CONFIG_SAMPLE_TRACE_EVENTS,编译成模块,加载测试;

4.4案例:irqs跟踪器

当关闭中断时,CPU不能响应外部事件,如果此时有中断发生,只能在下一次开中断时,才能响应这个外部事件,这段延迟叫“中断延迟”。

ftrace提供irqsoff来跟踪这个延迟;

[root@myQEMU tracing]# echo 0 tracing_on 
0 tracing_on
[root@myQEMU tracing]# echo 0 &gt; trace
[root@myQEMU tracing]# echo 0 options/func-trace   ///关闭function-trace可以减少一些延迟
0 options/func-trace
[root@myQEMU tracing]# echo irqsoff &gt; current_tracer 
[root@myQEMU tracing]# echo 1 &gt; tracing_on 
[root@myQEMU tracing]# echo 0 &gt; tracing_on

跟踪结果:

[root@myQEMU tracing]# cat trace
# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 5.13.0-rc3+
# --------------------------------------------------------------------
# latency: 2111 us, #158/158, CPU#0 | (M:server VP:0, KP:0, SP:0 HP:0 #P:1)
#    -----------------
#    | task: sh-2287 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  =&gt; started at: n_tty_write
#  =&gt; ended at:   n_tty_write
#
#
#                    _------=&gt; CPU#            
#                   / _-----=&gt; irqs-off        
#                  | / _----=&gt; need-resched    
#                  || / _---=&gt; hardirq/softirq 
#                  ||| / _--=&gt; preempt-depth   
#                  |||| /     delay            
#  cmd     pid     ||||| time  |   caller      
#     \   /        |||||  \    |   /         
      sh-2287      0d...    2us+: uart_write &lt;-n_tty_write
      sh-2287      0d...   14us+: start_backtrace &lt;-return_address
      sh-2287      0d...   31us+: __uart_start.isra.0 &lt;-uart_write
      sh-2287      0d...   45us+: pl011_start_tx &lt;-__uart_start.isra.0
      sh-2287      0d...   57us+: pl011_tx_chars &lt;-pl011_start_tx
      sh-2287      0d...   70us+: pl011_tx_char &lt;-pl011_tx_chars
      sh-2287      0d...   83us+: pl011_read &lt;-pl011_tx_char
      ...
      sh-2287      0d... 1843us+: pl011_read &lt;-pl011_tx_char
      sh-2287      0d... 1861us : pl011_tx_char &lt;-pl011_tx_chars
      sh-2287      0d... 1869us+: pl011_read &lt;-pl011_tx_char
      sh-2287      0d... 1889us : uart_write_wakeup &lt;-pl011_tx_chars
      sh-2287      0d... 1899us : tty_port_tty_wakeup &lt;-uart_write_wakeup
      sh-2287      0d... 1908us : tty_port_default_wakeup &lt;-tty_port_tty_wakeup
      sh-2287      0d... 1918us+: tty_port_tty_get &lt;-tty_port_default_wakeup
      sh-2287      0d... 1983us+: tty_wakeup &lt;-tty_port_default_wakeup
      sh-2287      0d... 1994us : __wake_up &lt;-tty_wakeup
      sh-2287      0d... 2004us : __wake_up_common_lock &lt;-__wake_up
      sh-2287      0d... 2014us : __wake_up_common &lt;-__wake_up_common_lock
      sh-2287      0d... 2024us : woken_wake_function &lt;-__wake_up_common
      sh-2287      0d... 2034us : default_wake_function &lt;-woken_wake_function
      sh-2287      0d... 2044us+: try_to_wake_up &lt;-default_wake_function
      sh-2287      0d... 2060us+: tty_kref_put &lt;-tty_port_default_wakeup
      sh-2287      0d... 2075us+: start_backtrace &lt;-return_address
      sh-2287      0d... 2090us+: start_backtrace &lt;-return_address
      sh-2287      0d... 2102us+: uart_write &lt;-n_tty_write
      sh-2287      0d... 2115us+: tracer_hardirqs_on &lt;-n_tty_write
      sh-2287      0d... 2179us : &lt;stack trace&gt;
 =&gt; n_tty_write
 =&gt; file_tty_write.isra.0
 =&gt; redirected_tty_write
 =&gt; new_sync_write
 =&gt; vfs_write
 =&gt; ksys_write
 =&gt; __arm64_sys_write
 =&gt; invoke_syscall.constprop.0
 =&gt; do_el0_svc
 =&gt; el0_svc
 =&gt; el0_sync_handler
 =&gt; el0_sync

每个参数的实际意义,参考官网: https://www.kernel.org/doc/html/latest/trace/ftrace.html

4.5案例:trace marker

trace_marker是一个文件节点,允许用户写入字符串,ftrace会记录写入动作的时间戳;

(1)由于trace_marker是写内存,速度很快,避免串口的长耗时;

(2)可以配合内核的event,跟踪两个trace marker之间,内核的运行状况;

这个可以用来跟踪分析应用程序;

测试代码:

#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;string.h&gt;
#include &lt;time.h&gt;
#include &lt;sys/types.h&gt;
#include &lt;sys/stat.h&gt;
#include &lt;fcntl.h&gt;
#include &lt;sys/time.h&gt;
#include &lt;sys/unistd.h&gt;
#include &lt;stdarg.h&gt;
#include &lt;unistd.h&gt;
#include &lt;ctype.h&gt;
#include &lt;signal.h&gt;
static int mark_fd = 1;
static __thread char buff[BUFSIZ+1];
static void setup_ftrace_marker(void)
{
  struct stat st;
  char *files[]={
    &quot;/sys/kernel/debug/tracing/trace_marker&quot;,
    &quot;/debug/tracing/trace_marker&quot;,
    &quot;/debugfs/tracing/trace_marker&quot;,
  };
  int ret;
  int i=0;
  for(i=0; i &lt; (sizeof(files)/sizeof(char*));i++) {
    ret = stat(files[i], &amp;st);
    if (ret &gt;=0) {
      break;
    }
  }
  if (ret &gt;= 0) {
    mark_fd = open(files[i], O_WRONLY);
    printf(&quot;cannot found the sys tracing.\n&quot;);
  }
  return 0;
}
static void ftrace_write(const char *fmt, ...)
{
  va_list ap;
  int n;
  if (mark_fd &lt; 0)
    return ;
  va_start(ap, fmt);
  n = vsnprintf(buff, BUFSIZ, fmt, ap);
  va_end(ap);
  write(mark_fd, buff, n);
}
void sig_handler()
{
  printf(&quot;Oops! will exit...\n&quot;);
  if (mark_fd &gt;= 0) {
    close(mark_fd);
  }
  _exit(0);
}
int main()
{ 
  printf(&quot;hello\n&quot;);
  int count = 0;
  signal(SIGINT,sig_handler);
  setup_ftrace_marker();
  ftrace_write(&quot;start program.\n&quot;);
  while(1) {
    usleep(300*1000);
    count++;
    ftrace_write(&quot;===test count=%d\n&quot;,count);
  }
  return 0;
}

执行跟踪:

echo 0 &gt; tracing_on 
echo 0 &gt; trace
echo 1 &gt; tracing_on 
/mnt/a.out 
echo 0 &gt; tracing_on 
cat trace

查看trace记录

[root@myQEMU tracing]# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 33/33   #P:1
#
#                                _-----=&gt; irqs-off
#                               / _----=&gt; need-resched
#                              | / _---=&gt; hardirq/softirq
#                              || / _--=&gt; preempt-depth
#                              ||| /     delay
#           TASK-PID     CPU#  ||||   TIMESTAMP  FUNCTION
#              | |         |   ||||      |         |
     rb_producer-428     [000] ....   125.274713: ring_buffer_producer_thread: Starting ring buffer hammer
           a.out-2291    [000] ....   125.361620: tracing_mark_write: start program.
           a.out-2291    [000] ....   125.667714: tracing_mark_write: ===test count=1
           a.out-2291    [000] ....   125.970099: tracing_mark_write: ===test count=2
           a.out-2291    [000] ....   126.280010: tracing_mark_write: ===test count=3
           a.out-2291    [000] ....   126.584222: tracing_mark_write: ===test count=4
           a.out-2291    [000] ....   126.886110: tracing_mark_write: ===test count=5
           a.out-2291    [000] ....   127.195146: tracing_mark_write: ===test count=6
           a.out-2291    [000] ....   127.498109: tracing_mark_write: ===test count=7
           a.out-2291    [000] ....   127.802138: tracing_mark_write: ===test count=8
           a.out-2291    [000] ....   128.112389: tracing_mark_write: ===test count=9
           a.out-2291    [000] ....   128.414082: tracing_mark_write: ===test count=10

PS:实际上android的atrace和Trace类,就是基于trace marker实现的;

4.6案例:wakeup

追踪普通进程从被唤醒到真正得到执行之间的延迟。

echo wakeup &gt; current_tracer
echo 1 &gt; tracing_on
cat trace |head -40

4.7案例:wakeup-rt

跟踪rt进程,从被唤醒到执行的延迟;

echo 0 &gt; tracing_on
echo &gt; trace
echo wakeup_rt &gt; current_tracer
echo 1 &gt; tracing_on
cat trace |head -40

当然也可以用脚本来执行这些过程,结果保存到文本:

#!/bin/sh
TRACE_PATH=/sys/kernel/debug/tracing
echo nop &gt; $TRACE_PATH/current_tracer
echo 0 &gt;$TRACE_PATH/tracing_on
echo  &gt;$TRACE_PATH/trace
echo 0 &gt; $TRACE_PATH/max_graph_depth
echo $$
#echo $$ &gt; $TRACE_PATH/set_ftrace_pid
echo function_graph &gt; $TRACE_PATH/current_tracer
echo &#039;blk_update_request&#039; &gt; $TRACE_PATH/set_graph_function
echo 1 &gt; options/func_stack_trace
echo 1 &gt; $TRACE_PATH/tracing_on
exec &quot;$@&quot;

实用案例:跟踪某个进程的相关函数

实际调试:如果能把环形队列的数据,写入磁盘,供后续分析,更有现实意义;通过脚本实现?

案例:跟踪指定进程函数调用

#!/bin/bash
debugfs=/sys/kernel/debug
echo nop > $debugfs/tracing/current_tracer
echo 0 > $debugfs/tracing/tracing_on
echo `pidof a.out` > $debugfs/tracing/set_ftrace_pid
echo function_graph > $debugfs/tracing/current_tracer
echo vfs_read > $debugfs/tracing/set_graph_function
echo 1 > $debugfs/tracing/tracing_on

案例:当内核log打印输出"min_adj 0"时,保存ftrace信息和kernel log信息到指定目录中

#!/bin/sh
mkdir -p /data/
echo 8 > /proc/sys/kernel/printk
echo -1000 > /proc/self/oom_score_adj
cd /sys/kernel/debug/tracing
echo 0 > trcing_on
echo 0 > trace
echo 1 > /sys/kernel/debug/tracing/events/oom/oom_score_adj_update/enable 
echo 1 > /sys/kernel/debug/tracing/events/vmscan/mm_shrink_slab_start/enable 
echo 1 > /sys/kernel/debug/tracing/events/vmscan/mm_shrink_slab_end/enable 
#开始采集
echo 1 > tracing_on
TIMES=0
while true
do 
  dmesg |grep "min_adj 0"
  if [ $? -eq 0]
  then
    cat /sys/kernel/debug/tracing/trace > /data/ftrace_.$TIMES
    dmesg > /data/kmsg.txt.$TIMES
    let TIMES+=1
    dmesg -cat
    echo > trace
  fi
  sleep 2
done

trace_cmd和kernelshark

这一组工具,实际上是将上面ftrace的过程,采集记录下来数据,然后图形展示,提供更直观的分析;

trace_cmd,使用遵循reset->record->stop->report模式,简单说用trace_cmd record采集数据,按"ctrl+c"停止采集,在当前目录生成trace.dat文件;用trace-cmd report可以解析trace.dat文件,不过是文字形式的。

下载编译trace-cmd:

git clone https://github.com/rostedt/trace-cmd.git
export CROSS_COMPILE=aarch64-linux-gnu-
export ARCH=arm64
make

kernelshark,可以将trace.dat文件图形化,方便观察和分析;

精品文章推荐阅读:

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
2天前
|
存储 运维 监控
Linux--深入理与解linux文件系统与日志文件分析
深入理解 Linux 文件系统和日志文件分析,对于系统管理员和运维工程师来说至关重要。文件系统管理涉及到文件的组织、存储和检索,而日志文件则记录了系统和应用的运行状态,是排查故障和维护系统的重要依据。通过掌握文件系统和日志文件的管理和分析技能,可以有效提升系统的稳定性和安全性。
20 7
|
2天前
|
存储 NoSQL Linux
linux之core文件如何查看和调试
通过设置和生成 core 文件,可以在程序崩溃时获取详细的调试信息。结合 GDB 等调试工具,可以深入分析 core 文件,找到程序崩溃的具体原因,并进行相应的修复。掌握这些调试技巧,对于提高程序的稳定性和可靠性具有重要意义。
42 6
|
5天前
|
监控 安全 Linux
启用Linux防火墙日志记录和分析功能
为iptables启用日志记录对于监控进出流量至关重要
|
17天前
|
运维 监控 Linux
BPF及Linux性能调试探索初探
BPF技术从最初的网络数据包过滤发展为强大的系统性能优化工具,无需修改内核代码即可实现实时监控、动态调整和精确分析。本文深入探讨BPF在Linux性能调试中的应用,介绍bpftune和BPF-tools等工具,并通过具体案例展示其优化效果。
42 14
|
23天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
23天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
24天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
24天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####