18 机器学习 - 决策树分类器案例

简介: 18 机器学习 - 决策树分类器案例

1.案例需求

我们的任务就是训练一个决策树分类器,输入身高和体重,分类器能给出这个人是胖子还是瘦子。

所用的训练数据如下,这个数据一共有10个样本,每个样本有2个属性,分别为身高和体重,第三列为类别标签,表示“胖”或“瘦”。该数据保存在1.txt中。

1.5 50 thin
1.5 60 fat
1.6 40 thin
1.6 60 fat
1.7 60 thin
1.7 80 fat
1.8 60 thin
1.8 90 fat
1.9 70 thin
1.9 80 fat

2.模型分析

决策树对于“是非”的二值逻辑的分枝相当自然。而在本数据集中,身高与体重是连续值怎么办呢?

虽然麻烦一点,不过这也不是问题,只需要找到将这些连续值划分为不同区间的中间点,就转换成了二值逻辑问题。

本例决策树的任务是找到身高、体重中的一些临界值,按照大于或者小于这些临界值的逻辑将其样本两两分类,自顶向下构建决策树。

3.代码实现

使用python的机器学习库,实现起来相当简单和优雅

# -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
from sklearn import tree
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
''' 数据读入 '''
data   = []
labels = []
with open("d:\\python\\ml\\data\\1.txt") as ifile:
    for line in ifile:
        tokens = line.strip().split(' ')
        data.append([float(tk) for tk in tokens[:-1]])
        labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
''' 标签转换为0/1 '''
y[labels=='fat']=1
''' 拆分训练数据与测试数据 '''
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
''' 使用信息熵作为划分标准,对决策树进行训练 '''
clf = tree.DecisionTreeClassifier(criterion='entropy')
print(clf)
clf.fit(x_train, y_train)
''' 把决策树结构写入文件 '''
with open("tree.dot", 'w') as f:
      f = tree.export_graphviz(clf, out_file=f)
''' 系数反映每个特征的影响力。越大表示该特征在分类中起到的作用越大 '''
print(clf.feature_importances_)
'''测试结果的打印'''
answer = clf.predict(x_train)
print(x_train)
print(answer)
print(y_train)
print(np.mean( answer == y_train))
'''准确率与召回率'''
precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train))
answer = clf.predict_proba(x)[:,1]
print(classification_report(y, answer, target_names = ['thin', 'fat']))

这时候会输出

[ 0.2488562  0.7511438]
array([[  1.6,  60. ],
       [  1.7,  60. ],
       [  1.9,  80. ],
       [  1.5,  50. ],
       [  1.6,  40. ],
       [  1.7,  80. ],
       [  1.8,  90. ],
       [  1.5,  60. ]])
array([ 1.,  0.,  1.,  0.,  0.,  1.,  1.,  1.])
array([ 1.,  0.,  1.,  0.,  0.,  1.,  1.,  1.])
1.0
             precision    recall  f1-score   support
       thin       0.83      1.00      0.91         5
        fat        1.00      0.80      0.89         5
avg / total       1.00      1.00      1.00         8
array([ 0.,  1.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  0.])
array([ 0.,  1.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  1.])

可以看到,对训练过的数据做测试,准确率是100%。但是最后将所有数据进行测试,会出现1个测试样本分类错误。

说明本例的决策树对训练集的规则吸收的很好,但是预测性稍微差点。

4.决策树的保存

一棵决策树的学习训练是非常耗费运算时间的,因此,决策树训练出来后,可进行保存,以便在预测新数据时只需要直接加载训练好的决策树即可。

本案例的代码中已经决策树的结构写入了tree.dot中。打开该文件,很容易画出决策树,还可以看到决策树的更多分类信息。

本例的tree.dot如下所示:

digraph Tree {
0 [label="X[1] <= 55.0000\nentropy = 0.954434002925\nsamples = 8", shape="box"] ;
1 [label="entropy = 0.0000\nsamples = 2\nvalue = [ 2.  0.]", shape="box"] ;
0 -> 1 ;
2 [label="X[1] <= 70.0000\nentropy = 0.650022421648\nsamples = 6", shape="box"] ;
0 -> 2 ;
3 [label="X[0] <= 1.6500\nentropy = 0.918295834054\nsamples = 3", shape="box"] ;
2 -> 3 ;
4 [label="entropy = 0.0000\nsamples = 2\nvalue = [ 0.  2.]", shape="box"] ;
3 -> 4 ;
5 [label="entropy = 0.0000\nsamples = 1\nvalue = [ 1.  0.]", shape="box"] ;
3 -> 5 ;
6 [label="entropy = 0.0000\nsamples = 3\nvalue = [ 0.  3.]", shape="box"] ;
2 -> 6 ;
}

根据这个信息,决策树应该长的如下这个样子:

目录
相关文章
|
4月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
137 10
|
12天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
96 15
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
144 1
|
4月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
使用Python实现简单的机器学习分类器
【8月更文挑战第37天】本文将引导读者了解如何利用Python编程语言构建一个简单的机器学习分类器。我们将从基础概念出发,通过代码示例逐步深入,探索数据预处理、模型选择、训练和评估过程。文章旨在为初学者提供一条清晰的学习路径,帮助他们理解并实现基本的机器学习任务。
|
4月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
53 3
|
4月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
57 1
|
5月前
|
机器学习/深度学习 人工智能 开发者
使用Python实现简单的机器学习分类器
【8月更文挑战第31天】在这篇文章中,我们将探索如何使用Python来创建一个简单的机器学习分类器。通过使用scikit-learn库,我们可以快速构建和训练模型,而无需深入了解复杂的数学原理。我们将从数据准备开始,逐步介绍如何选择合适的模型、训练模型以及评估模型的性能。最后,我们将展示如何将训练好的模型应用于新数据的预测。无论你是机器学习的初学者还是有一定经验的开发者,这篇文章都将为你提供一个实用的指南,帮助你入门并理解基本的机器学习概念。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树