18 误差分布曲线的建立 - 拉普拉斯的研究

简介: 18 误差分布曲线的建立 - 拉普拉斯的研究

在1772-1774年间,拉普拉斯也加入到了寻找误差分布函数的队伍中。与辛普森不同,拉普拉斯不是先假定一种误差分后去设法证明平均值的优良性,而是直接射向应该去怎么的分布为误差分布,以及在确定了误差分布之后,如何根据观测值去估计真值

拉普拉斯假定误差密度函数f(x)满足如下性质:

m>0,且为常数,上述方程解出C>0且为常数,由于

故当x<0,结合概率密度的性质之一,解得c=m/2。

由此,最终1772年,拉普拉斯求得的分布密度函数为:

这个概率密度函数现在被称为拉普拉斯分布:

以这个函数作为误差密度,拉普拉斯开始考虑如何基于测量的结果去估计未知参数的值,即用什么方法通过观测值去估计真值呢?要知道咱们现今所熟知的所谓点估计方法、矩估计方法,包括所谓的极大似然估计法之类的,当时可是都还没有发明。

拉普拉斯可以算是一个贝叶斯主义者,他的参数估计的原则和现代贝叶斯方法非常相似:假设先验分布是均匀的,计算出参数的后验分布后,取后验分布的中值点,即1/2分位点,作为参数估计值。可是基于这个误差分布函数做了一些计算之后,拉普拉斯发现计算过于复杂,最终没能给出什么有用的结果,故拉普拉斯最终还是没能搞定误差分布的问题。

至此,整个18世纪,可以说,寻找误差分布的问题,依旧进展甚微,下面,便将轮到高斯出场了,历史总是出人意料,高斯以及其简单的手法,给了这个误差分布的问题一个圆满的解决,其结果也就成为了数理统计发展史上的一块重要的里程碑。

目录
相关文章
|
6月前
R语言分布滞后线性和非线性模型DLM和DLNM建模应用| 系列文章
R语言分布滞后线性和非线性模型DLM和DLNM建模应用| 系列文章
|
6月前
|
计算机视觉
偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据
偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据
|
6月前
|
数据可视化
R语言极值推断:广义帕累托分布GPD使用极大似然估计、轮廓似然估计、Delta法
R语言极值推断:广义帕累托分布GPD使用极大似然估计、轮廓似然估计、Delta法
|
6月前
R语言广义加性模型GAMs分析温度、臭氧环境数据绘制偏回归图与偏残差图
R语言广义加性模型GAMs分析温度、臭氧环境数据绘制偏回归图与偏残差图
|
6月前
|
存储 机器学习/深度学习 数据挖掘
R语言分布滞后线性和非线性模型(DLM和DLNM)建模
R语言分布滞后线性和非线性模型(DLM和DLNM)建模
|
6月前
基于R统计软件的三次样条和平滑样条模型数据拟合及预测
基于R统计软件的三次样条和平滑样条模型数据拟合及预测
|
6月前
R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测
R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测
|
数据挖掘 数据处理
17 误差分布曲线的建立 - 辛普森的研究
17 误差分布曲线的建立 - 辛普森的研究
79 0
20 误差分布曲线的建立 - 正态分布的时间简史
20 误差分布曲线的建立 - 正态分布的时间简史
63 0
|
数据挖掘
19 误差分布曲线的建立 - 高斯导出误差正态分布
19 误差分布曲线的建立 - 高斯导出误差正态分布
65 0