计算机发展前沿技术——医学领域的人工智能2

简介: 随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。

2、人工智能在医学领域的进展[2]
在医疗工作中,图像对于医生诊断疾病具有重要的辅助作用,在这里主要通过列举人工智能在临床医学中的应用来反应其进展。人工智能与图像的结合大大提高了临床医生诊断疾病的准确率与效率,主要包括在影像、内镜以及病理检查中的应用。基于计算机视觉技术数学模型,人工智能收集、提取医学图像的原始像素并挖掘图像的有效特征,以此学习和模拟医生,这是一个由整体到部分再由部分到整体的复杂过程。

2.1影像检查
人工智能的运用能很好地协助医生根据影像学检查对患者进行疾病诊断。SUN-WOO等运用基于颅脑MR图像的计算机辅助诊断系统进行颅脑转移瘤诊断分析,影像医生的诊断敏感度从77.6%提升至81.9%,每例患者的诊断时间从114.4s减至72.1s;经验不足的影像医生诊断敏感度提高了约10%。MASOOD等运用基于胸部CT图像的计算机辅助诊断系统进行肺癌诊断分析,诊断平均准确率84.58%,对肺癌T1~T4分期鉴别的准确率77.89%~90.14%。BECKER等使用深度学习图像分析系统对143例诊断为乳腺癌或交界性病变的患者进行诊断分析,诊断准确率达82%,而经验丰富的放射科医师诊断准确率为79%~87%,两者相差不大。ARAMENDIA-VIDAURRETA等使用基于子宫附件超声图像的人工智能系统对附件肿物进行定性,准确率高达98.78%,灵敏度为98.50%,特异度为98.90%。由此可以看出,人工智能系统对于医生判读影像学结果有一定的辅助作用及价值,其不仅能提高医生对疾病诊断的敏感度,还能缩短医生阅片诊断的时间,既提升了准确率,也提高了效率。

2.2内镜检查
人工智能技术能通过摄取内镜所获得的图片中组织的微细纹理特征,进行深度学习,将内镜图像进行分类并预测诊断。MIYAGI等基于阴道镜图像,使用人工智能系统对330个图像进行分析,诊断判定准确率为0.823,敏感度为0.797,特异度为0.800。ITOH等开发的人工智能模型,基于胃镜图像进行幽门螺杆菌感染诊断,敏感度和特异度分别为86.7%、86.7%。GREGOR等基于结直肠镜检查运用人工智能实时定位并识别息肉,准确率达96%。人工智能通过对内镜图像进行深度学习能更好地协助临床医师诊断疾病。

相关文章
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
390 4
|
9月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
9月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1295 62
|
10月前
|
人工智能 算法 搜索推荐
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
1128 2
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
1467 33
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
613 14
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##

热门文章

最新文章