AVL 树

简介: AVL 树是一种自平衡二叉搜索树,它的插入和删除操作的时间复杂度都是 O(log n)。AVL 树的高度始终保持在 O(log n) 级别,因此它是一种高效的数据结构。

AVL 树是一种自平衡二叉搜索树,它的插入和删除操作的时间复杂度都是 O(log n)。AVL 树的高度始终保持在 O(log n) 级别,因此它是一种高效的数据结构。
AVL 树的基本原理是,它的每个节点都有一个平衡因子,表示该节点的左子树和右子树的高度差。插入和删除操作会改变节点的平衡因子,因此需要通过旋转操作来重新平衡树。
使用 AVL 树时,需要提供以下几个方法:

  1. 插入节点:将一个节点插入到 AVL 树中,并返回插入后的树。
  2. 删除节点:将一个节点从 AVL 树中删除,并返回删除后的树。
  3. 旋转操作:将一个节点旋转以重新平衡树。
  4. 获取平衡因子:获取一个节点的平衡因子。
  5. 更新平衡因子:更新一个节点的平衡因子。
    在插入和删除节点时,需要先比较当前节点的平衡因子,如果平衡因子大于 1 或小于 -1,则需要进行旋转操作来重新平衡树。
    下面是一个简单的 AVL 树的实现:

class Node:
def init(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
self.balance_factor = 0
class AVLTree:
def init(self):
self.root = None
def insert(self, key):
if not self.root:
self.root = Node(key)
else:
self.root = self._insert(self.root, key)
return self
def _insert(self, node, key):
if not node:
return Node(key)
if key < node.key:
node.left = self._insert(node.left, key)
else:
node.right = self._insert(node.right, key)
node.height = 1 + max(self._height(node.left), self._height(node.right))
balance = self._get_balance_factor(node)
if balance > 1:
if key < node.left.key:
return self._rotate_right(node)
else:
node.left = self._rotate_left(node.left)
return self._rotate_right(node)
if balance < -1:
if key > node.right.key:
return self._rotate_left(node)
else:
node.right = self._rotate_right(node.right)
return self._rotate_left(node)
return node
def delete(self, key):
if self.root:
self.root = self._delete(self.root, key)
return self
def _delete(self, node, key):
if not node:
return node
if key < node.key:
node.left = self._delete(node.left, key)
elif key > node.key:
node.right = self._delete(node.right, key)
else:
if not node.left:
return node.right
if not node.right:
return node.left
temp = self._find_min_value_node(node.right)
node.key = temp.key
node.right = self._delete(node.right, temp.key)
if not node:
return node
node.height = 1 + max(self._height(node.left), self._height(node.right))
balance = self._get_balance_factor(node)
if balance > 1:
if self._get_balance_factor(node.left) < 0:
node.left = self._rotate_left(node.left)
return self._rotate_right(node)
if balance < -1:
if self._get_balance_factor(node.right) > 0:
node.right = self._rotate_right(node.right)
return self._rotate_left(node)
return node
def _rotate_left(self, z):
y = z.right
T2 = y.left
y.left = z
z.right = T2

目录
相关文章
|
7天前
|
云安全 人工智能 自然语言处理
|
11天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
991 35
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
673 4
|
7天前
|
机器学习/深度学习 人工智能 数据可视化
1秒生图!6B参数如何“以小博大”生成超真实图像?
Z-Image是6B参数开源图像生成模型,仅需16GB显存即可生成媲美百亿级模型的超真实图像,支持中英双语文本渲染与智能编辑,登顶Hugging Face趋势榜,首日下载破50万。
527 25
|
14天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
859 59
Meta SAM3开源:让图像分割,听懂你的话
|
4天前
|
弹性计算 网络协议 Linux
阿里云ECS云服务器详细新手购买流程步骤(图文详解)
新手怎么购买阿里云服务器ECS?今天出一期阿里云服务器ECS自定义购买流程:图文全解析,阿里云服务器ECS购买流程图解,自定义购买ECS的设置选项是最复杂的,以自定义购买云服务器ECS为例,包括付费类型、地域、网络及可用区、实例、镜像、系统盘、数据盘、公网IP、安全组及登录凭证详细设置教程:
195 114
|
11天前
|
人工智能 前端开发 算法
大厂CIO独家分享:AI如何重塑开发者未来十年
在 AI 时代,若你还在紧盯代码量、执着于全栈工程师的招聘,或者仅凭技术贡献率来评判价值,执着于业务提效的比例而忽略产研价值,你很可能已经被所谓的“常识”困住了脚步。
576 50
大厂CIO独家分享:AI如何重塑开发者未来十年
|
7天前
|
存储 自然语言处理 测试技术
一行代码,让 Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
本文深入剖析 Elasticsearch 中模糊查询的三大陷阱及性能优化方案。通过5000 万级数据量下做了高压测试,用真实数据复刻事故现场,助力开发者规避“查询雪崩”,为您的业务保驾护航。
382 25