深入了解基数排序:原理、性能分析与 Java 实现

简介: 基数排序(Radix Sort)是一种非比较性排序算法,它根据元素的每个位上的值来进行排序。基数排序适用于整数或字符串等数据类型的排序。

基数排序(Radix Sort)是一种非比较性排序算法,它根据元素的每个位上的值来进行排序。基数排序适用于整数或字符串等数据类型的排序。本文将详细介绍基数排序的原理、性能分析及java实现。

radixsort.jpg

基数排序原理

基数排序的基本原理是按照低位先排序,然后收集;再按照高位排序,再收集;以此类推,直到最高位。这样从最低位排序一直到最高位排序完成后,数列就变成一个有序序列。步骤如下:

  1. 从最低位开始,依次进行一次稳定的计数排序(或桶排序),根据当前位的值将元素分配到不同的桶中。

  2. 每一轮排序根据当前位的值进行桶排序,保证稳定性。

  3. 重复以上步骤直到最高位排序完成。

排序图解:
radixsort620460b3e17507e4.png

Java代码实现

以下是使用 Java 实现基数排序的示例代码:

public class Test {

    public static void main(String[] args) {
        int[] arr = new int[]{122,38,3738,333,63,436,2};
        System.out.println("原始数组:"+ Arrays.toString(arr));
        radixSort(arr);
        System.out.println("排序后的数组:"+ Arrays.toString(arr));
    }

    //基基数排序(Radix Sort)
    public static void radixSort(int[] arr) {
        //数组为空或者只有一个元素是返回
        if(arr == null || arr.length < 2){
            return;
        }
        //获取数组中的最大值
        int maxVal = Arrays.stream(arr).max().getAsInt();
        //计算最大值的位数
        int numDig  = String.valueOf(maxVal).length();
        //数组长度
        int len = arr.length;
        //位数计数值
        int dig = 1;
        //计算每个位数上的数字的被除数
        int dividend = 1;
        // 用于存储每个桶中元素的出现次数
        int[] order = new int[10];
        // 用于存储每个桶中的数据
        int[][] tempArr = new int[10][len];

        //循环每个位数进行桶排序
        while (dig <= numDig){
            //将数组中的数据按i位的数据放入桶中
            for(int i = 0; i < len; i++){
                //计算当前位数的值
                int index =  (arr[i] / dividend ) % 10  ;
                tempArr[index][order[index]] = arr[i];
                //当前位数的桶计数
                order[index]++;
            }
            //给元素中返回数据的下标
            int l = 0;
            //将按当前位数进行过桶排序的数据放回到源数组中
            for (int j = 0; j < order.length; j++){
                //当前桶中有数据才进行操作
                if(order[j] > 0){
                    for(int k = 0; k < order[j];k++){
                        arr[l++] = tempArr[j][k];
                    }
                    //将计数数组的值设置为0,方便下一位计数
                    order[j] = 0;
                }
            }
            System.out.println("第"+dig+"位排序后的数组:"+ Arrays.toString(arr));
            //位数加1,下次进行下一位的排序
            dig++;
            //被除数乘以10,方便计算下一位数的值的计算
            dividend *= 10;
        }

    }

}

输出结果为:

原始数组:[122, 38, 3738, 333, 63, 436, 2]
第1位排序后的数组:[122, 2, 333, 63, 436, 38, 3738]
第2位排序后的数组:[2, 122, 333, 436, 38, 3738, 63]
第3位排序后的数组:[2, 38, 63, 122, 333, 436, 3738]
第4位排序后的数组:[2, 38, 63, 122, 333, 436, 3738]
排序后的数组:[2, 38, 63, 122, 333, 436, 3738]

性能分析

  • 时间复杂度:基数排序的时间复杂度通常为$O(d * (n + r))$,其中n是元素数量,d是数字位数,r是基数的大小。通常情况下,基数排序的时间复杂度为线性的,但它依赖于数据位数。如果位数很大,性能可能会受到影响。

  • 空间复杂度:基数排序的空间复杂度取决于计数排序的使用情况。在处理较大范围的数据时,空间复杂度可能会较高。

  • 稳定性:基数排序通常是稳定的。

实用场景

  • 当处理的数据是整数或字符串时,基数排序是一个理想的选择。例如,对于字符串排序,可以按照字符的ASCII码值进行排序。

  • 当数据集的位数相对较小且分布较为均匀时,基数排序可以表现出良好的性能。它不依赖于比较操作,因此在一些特定情况下可以优于基于比较的排序算法。

  • 在内存充足的情况下,基数排序可以高效地处理大量数据,但在位数非常大的情况下可能会受到内存限制的影响。

总结

综上所述,基数排序是一种高效的排序算法,特别适用于处理位数相对较小且分布较为均匀的整数或字符串。但需要注意,对于位数较大的数据集或内存受限的情况,可能需要考虑其他排序算法来满足要求。

目录
相关文章
|
5天前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
20 5
|
2天前
|
监控 前端开发 Java
Java SpringBoot –性能分析与调优
Java SpringBoot –性能分析与调优
|
3天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
11 2
|
6天前
|
Java 数据格式 索引
使用 Java 字节码工具检查类文件完整性的原理是什么
Java字节码工具通过解析和分析类文件的字节码,检查其结构和内容是否符合Java虚拟机规范,确保类文件的完整性和合法性,防止恶意代码或损坏的类文件影响程序运行。
|
3天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
13 1
|
9天前
|
存储 安全 Java
深入理解Java中的FutureTask:用法和原理
【10月更文挑战第28天】`FutureTask` 是 Java 中 `java.util.concurrent` 包下的一个类,实现了 `RunnableFuture` 接口,支持异步计算和结果获取。它可以作为 `Runnable` 被线程执行,同时通过 `Future` 接口获取计算结果。`FutureTask` 可以基于 `Callable` 或 `Runnable` 创建,常用于多线程环境中执行耗时任务,避免阻塞主线程。任务结果可通过 `get` 方法获取,支持阻塞和非阻塞方式。内部使用 AQS 实现同步机制,确保线程安全。
|
Arthas Java 测试技术
超好用的自带火焰图的 Java 性能分析工具 Async-profiler 了解一下
超好用的自带火焰图的 Java 性能分析工具 Async-profiler 了解一下
2116 0
超好用的自带火焰图的 Java 性能分析工具 Async-profiler 了解一下
|
7天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
77 38
|
4天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
8天前
|
Java 调度
[Java]线程生命周期与线程通信
本文详细探讨了线程生命周期与线程通信。文章首先分析了线程的五个基本状态及其转换过程,结合JDK1.8版本的特点进行了深入讲解。接着,通过多个实例介绍了线程通信的几种实现方式,包括使用`volatile`关键字、`Object`类的`wait()`和`notify()`方法、`CountDownLatch`、`ReentrantLock`结合`Condition`以及`LockSupport`等工具。全文旨在帮助读者理解线程管理的核心概念和技术细节。
23 1
[Java]线程生命周期与线程通信