【LeetCode】【数据结构】栈与队列必刷OJ题

简介: 【LeetCode】【数据结构】栈与队列必刷OJ题

【LeetCode】20.有效的括号(栈的括号匹配问题)

原题链接:🍏有效的括号🍏

题目:给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 1.左括号必须用相同类型的右括号闭合。
  2. 2.左括号必须以正确的顺序闭合。
  3. 3.每个右括号都有一个对应的相同类型的左括号。

根据栈“先入后出”的特性,我们可以利用栈的数据结构进行检验。

当遇到左括号时,入栈,遇到右括号出栈。

最后检查栈中是否还堆积有元素,如果有证明匹配失败,如果栈空,证明匹配成功。

代码实现:

typedef int STDataType;
typedef struct Stack
{
  STDataType* a;
  int top;
  int capacity;
}ST;
// 初始化
void STInit(ST* ps)
{
  assert(ps);
  ps->a = NULL;
  ps->capacity = 0;
  ps->top = 0;
}
// 销毁
void STDestroy(ST* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->capacity = ps->top = 0;
}
// 入栈
void STPush(ST* ps, STDataType x)
{
  assert(ps);
  if (ps->capacity == ps->top)
  {
    int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
    STDataType* tmp = (STDataType*)realloc(ps->a,newcapacity * sizeof(STDataType));
    if (tmp==NULL)
    {
      perror("realloc fail");
      exit(-1);
    }
    ps->a = tmp;
    ps->capacity = newcapacity;
  }
  ps->a[ps->top]=x;
  ps->top++;
}
// 出栈
void STPop(ST* ps)
{
  assert(ps);
  assert(ps->top > 0);
  ps->top--;
}
// 取栈顶元素
STDataType STTop(ST* ps)
{
  assert(ps);
  assert(ps->top > 0);
  return ps->a[ps->top-1];
}
// 判空
bool STEmpty(ST* ps)
{
  assert(ps);
  return ps->top == 0;
}
// 检验是否匹配
bool isValid(char * s)
{
    ST st;
    STInit(&st);
    char val;
    while(*s)
    {
        if(*s=='('||*s=='{'||*s=='[')
        {
            STPush(&st,*s);// 是左括号 入栈
        }
        else
        {
            if(STEmpty(&st))// 排除 首个字符为右括号的情况
            {
                STDestroy(&st);
                return false;
            }
            val=STTop(&st);// 取栈顶字符判断
            STPop(&st);
            if((*s==')'&& val!='(')
            ||(*s==']' && val!='[')
            ||(*s=='}' && val!='{'))// 左右括号不匹配
            {
                STDestroy(&st);
                return false;
            }
        }
        s++;
    }
    bool ret=STEmpty(&st);// 判断数量是否匹配
    STDestroy(&st);
    return ret;
}

【LeetCode】225.用队列实现栈

原题链接:🍏用队列实现栈🍏

题目:请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。

实现 MyStack 类:

void push(int x) 将元素 x 压入栈顶。

int pop() 移除并返回栈顶元素。

int top() 返回栈顶元素。

boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。


首先我们知道队列的特性是先入先出,栈的特性是先入后出,题目既然给了我们两个队列,那么一定是利用这两个队列进行捯数据,从而实现栈先入后出的特性。

思路:

每次入栈,利用不空的队列入数据;

当需要出栈时,将非空队列“出队”到空的队列上,直到剩余最后一个元素,取该元素,然后出队,即完成出栈动作。

当需要取栈顶元素时,只需要取非空队列的队尾,此时该队尾即为栈顶元素。

当需要判空时,只需要判断两个队列是否都为空即可。


注意:该题主要考察的其实是大家对于结构的理解,如形参MyStack* obj,实参对应为&obj->q1或&obj->q2,&操作符的优先级低于->,obj是该栈指针,obj->q1为队列结构体,但由于参数为指针类型,所以需要&。

代码实现:

// 队列的基本函数
typedef int QDataType;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Que;
void QueueInit(Que* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
bool QueueEmpty(Que* pq)
{
  assert(pq);
  return pq->head == NULL;
}
void QueueDestroy(Que* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueuePush(Que* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->tail == NULL)
  {
    pq->tail = pq->head = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
  pq->size++;
}
void QueuePop(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
  pq->size--;
}
QDataType QueueFront(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->head->data;
}
QDataType QueueBack(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}
int QueueSize(Que* pq)
{
  assert(pq);
  return pq->size;
}
// 以上为队列的基本函数
// 以下为用队列实现栈
// 定义栈
typedef struct
{
  Que q1;
  Que q2;
} MyStack;
// 创建栈
MyStack* myStackCreate()
{
  MyStack* pst = (MyStack*)malloc(sizeof(MyStack));
  QueueInit(&pst->q1);
  QueueInit(&pst->q2);
  return pst;
}
// 入栈
void myStackPush(MyStack* obj, int x)
{
  if (!QueueEmpty(&obj->q1))
  {
    QueuePush(&obj->q1, x);
  }
  else
  {
    QueuePush(&obj->q2, x);
  }
}
// 出栈
int myStackPop(MyStack* obj)
{
    // 假设法,假设q1为空,q2不空
  Que* EmpQue = &obj->q1;
  Que* noEmpQue = &obj->q2;
  if (!QueueEmpty(&obj->q1))
  {
    noEmpQue = &obj->q1;
    EmpQue = &obj->q2;
  }
    // 此时EmpQue一定为空的队列,noEmpQue 一定不为空的队列
    // 将size-1个数据移动到空队列中
  while (QueueSize(noEmpQue) > 1)
  {
    QueuePush(EmpQue, QueueFront(noEmpQue));
    QueuePop(noEmpQue);
  }
    //保存返回值
  int ret = QueueFront(noEmpQue);
  QueuePop(noEmpQue);
  return ret;
}
// 取栈顶元素
int myStackTop(MyStack* obj)
{
    // 不空的队列的队尾即为栈顶
  if (!QueueEmpty(&obj->q1))
  {
    return QueueBack(&obj->q1);
  }
  else
  {
    return QueueBack(&obj->q2);
  }
}
// 判空
bool myStackEmpty(MyStack* obj)
{
  return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}
// 销毁栈
void myStackFree(MyStack* obj)
{
  QueueDestroy(&obj->q1);
  QueueDestroy(&obj->q2);
    // free栈之前一定要先销毁队列,否则会导致内存泄露
  free(obj);
}

【LeetCode】232.用栈实现队列

原题链接:🍏用栈实现队列🍏

题目:请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):

实现 MyQueue 类:

void push(int x) 将元素 x 推到队列的末尾

int pop() 从队列的开头移除并返回元素

int peek() 返回队列开头的元素

boolean empty() 如果队列为空,返回 true ;否则,返回 false


与上面用队列实现栈的思路相似,需要两个栈用来捯数据,不同的是,分析过后你会发现这里的两个栈,一个可以固定用来做入队栈(下面统称为pushst),而另外一个固定用来做出队栈(下面统称为popst)。

思路:

入队时,直接push到pushst即可;

出队时,需要进行判断,当popst不为空时,直接出栈popst,注意保存栈顶元素以便返回;当popst为空时,需要将pushst的数据依次捯到popst中,然后出栈popst,同样注意保存栈顶元素以便返回;

返回队头元素时,我们可以写一个返回栈底元素的函数,然后同样进行判断,如果popst为空,我们就返回pushst的栈底;如果popst不为空,我们就返回popst的栈顶即可;

判空时,思路与用队列实现栈相同。

代码实现:

typedef struct 
{
    ST s1;//入队栈pushst
    ST s2;//出队栈popst
} MyQueue;
MyQueue* myQueueCreate() 
{
    MyQueue* pst = (MyQueue*)malloc(sizeof(MyQueue));
    STInit(&pst->s1);
    STInit(&pst->s2);
    return pst;
}
void myQueuePush(MyQueue* obj, int x) 
{
    STPush(&obj->s1,x);
}
int myQueuePop(MyQueue* obj) 
{
    if(!STEmpty(&obj->s2))
    {
        int x=STTop(&obj->s2);
        STPop(&obj->s2);
        return x;
    }
    else
    {
        while(!STEmpty(&obj->s1))
        {
            int x=STTop(&obj->s1);
            STPop(&obj->s1);
            STPush(&obj->s2,x);
        }
        int y=STTop(&obj->s2);
        STPop(&obj->s2);
        return y;
    }
}
int myQueuePeek(MyQueue* obj) 
{
    if(STEmpty(&obj->s2))
    {
        return STbase(&obj->s1);
    }
    else
    {
        return STTop(&obj->s2);
    }
}
bool myQueueEmpty(MyQueue* obj) 
{
    return STEmpty(&obj->s1)&&STEmpty(&obj->s2);
}
void myQueueFree(MyQueue* obj) 
{
    STDestroy(&obj->s1);
    STDestroy(&obj->s2);
    free(obj);
}


【LeetCode】622.设计循环队列

原题链接:🍏设计循环队列🍏

题目:设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。


循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。


你的实现应该支持如下操作:


MyCircularQueue(k): 构造器,设置队列长度为 k 。

Front: 从队首获取元素。如果队列为空,返回 -1 。

Rear: 获取队尾元素。如果队列为空,返回 -1 。

enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。

deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。

isEmpty(): 检查循环队列是否为空。

isFull(): 检查循环队列是否已满。


由于题目中已经明确队列长度,所以定长数组是一个较优的解决方案。

该题目最要首先理解的两个函数为判空和判满。

判空:我们首先肯定会想到当front和rear相等时,即为空。


那么问题来了,如何判满呢?

貌似判空和判满都可以利用front和rear是否相等来判断,如何区分呢?

判满:普遍的解决方案为牺牲一个空间,让该数组始终留有一个空间,用作区分,那么就有以下几种情况,请试着依据下图总结规律,得到判满通用公式。

判满公式:(rear+1)%(k+1)==front

只要了解了这个思想,剩下的就简单很多了。

代码实现:

typedef struct 
{
    int* a;
    int front;
    int rear;
    int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) 
{
    MyCircularQueue* obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    obj->a=(int*)malloc(sizeof(int)*(k+1));
    obj->front=obj->rear=0;
    obj->k=k;
    return obj;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{
    return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) 
{
    return (obj->rear+1)%(obj->k+1)==obj->front;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    obj->a[obj->rear]=value;
    obj->rear++;
    obj->rear%=obj->k+1;
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    obj->front++;
    obj->front%=(obj->k+1);
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[(obj->rear+obj->k)%(obj->k+1)];
}
void myCircularQueueFree(MyCircularQueue* obj) 
{
    free(obj->a);
    free(obj);
}


目录
相关文章
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
42 1
|
2天前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
112 75
|
2天前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
24 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
2天前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
25 9
|
2天前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
21 7
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
78 5
|
2月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
57 0
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
67 6
|
5月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
133 2