Linux内核分析与应用2-内存寻址

简介: Linux内核分析与应用2-内存寻址

2.1 内存寻址

微信截图_20230926004514.png

数据连续存储和选择读取思想,是目前我们使用的几乎所有机器运行背后的灵魂

计算机体系结构中的核心问题之一,就是如何有效地进行内存寻址; 内存寻址技术,从某种程度上代表了计算机技术.


"段"的引入:

段描述了一块有限的内存区域,区域的起始位置存在专门的寄存器,也就是段寄存器中.

"保护模式"的引入:

访问内存时不能直接从段寄存器中获得段的起始地址,而需经过额外的转化或检查

"黄金时代":

微信截图_20230926004527.png

微信截图_20230926004536.png

微信截图_20230926004543.png

Linux内核中的C和汇编语言

  • 用的GNU的扩展C
  • 汇编语言用的是AT&T的汇编格式与Intel的汇编格式稍有差异

在C语言中,也可以嵌入汇编语言,叫做GCC嵌入式汇编



2.2 段机制

将虚地址转换为线性地址

使用readelf和objdump解析目标文件

image.png

MMU: 内存管理单元,和CPU是在一起的.MMU把虚地址转化成物理地址,送给存储器.

微信截图_20230926004729.png

微信截图_20230926004738.png

微信截图_20230926004746.png

微信截图_20230926004755.png

(Intel)I386的体系结构



2.3 分页机制

分页在分段之后进行,其作用是完成从线性地址到物理地址的转换

必须在保护模式下才能启动分页功能

image.png

在32位系统上一般默认为4K大小,也可以是2MB或4MB

64位系统上,可以是4KB,8KB,最大可以是256MB

分页使得每个进程可以拥有自己独立的虚拟地址空间

(更多可参考 为什么 Linux 默认页大小是 4KB)

微信截图_20230926004904.png

两级页表:

image.png

Linux四级分页模式

微信截图_20230926004952.png

2.4 动手实践-将虚拟地址转换成物理地址

微信截图_20230926005028.png

页全局目录

所有的进程都共享一个内核页表

最新的CPU已经支持五级页表

64位系统中已经不再用"高级内存"

mknod命令



章节测试:


<1>.操作系统启动时,处理器处于保护模式  (错)


<2>.X86中段的描述包含基地址和界限 (错)


<3>.Intel8086的寻址范围是1MB,80386的寻址范围是 4GB (对)


<4>.分页机制是在保护模式下开启的。 (对)


<5>.在保护模式下,段的大小可以达到4GB (对)


<6>. CR3寄存器存放页目录基地址  (对)


<7>.x86的保护模式就是来保护操作系统的  (错)


<8>. 分页的原理使得每个进程可以拥有自己独立的虚拟内存空间 (对)


<9>. 分Linux之所以巧妙地绕过段机制,主要是因为将段的基址设为0,即偏移量等于线性地址  (对)


<10>. 在x86中,启用分页机制是通过启用保护允许位PE而达到的   (错)


x86   保护模式 + 分页管理机制

开启分页机制———《x86汇编语言:从实模式到保护模式》读书笔记44


<11>. 链接以后形成的地址空间是虚拟地址空间。 (对)


<12>. 虚拟地址是程序访问存储器所使用的逻辑地址  ;线性地址是逻辑地址到物理地址变换之间的中间层;物理地址是每一个字节单元的一个唯一的存储器地址  (对)


<13>. CPU访问的是虚拟地址。(对)


<14>. 80x86的控制寄存机器主要用于分段机制  (错)


<15>. 80x86的分段机制是必选的,分页机制是可选的 (对)

但是现实情况不是的,操作系统大多都用了分页机制


<16>. 保护模式提供了四个特权级,Linux使用了其中的2个,0级对应内核态,2级对应用户态  (错)


段被分为了4个特权级,分别为0-3级,有时候我们也叫做ring0-ring3,其中,数值越小特权级越高

核心代码和数据所在的段的特权级都比较高,一般在ring0,而用户程序所在的段的特权级较低,一般在ring3。当低特权级的任务试图在未被允许的情况下访问高特权级的段时,将会产生常规保护错误。

而处理器是如何区分所在段的特权级,进而对其进行保护的呢?这就不得不提到CPL、DPL和RPL三者了。但是在开始之前,我们需要先了解一下一致代码段和非一致代码段。

保护模式特权级概述

操作系统-保护模式中的特权级


<17>. 页面大小是由操作系统设计者确定的  (错)


<18>. 页面高速缓存是一种硬件机制,专门用来支持地址转换的  (对)

与程序员相关的CPU缓存知识


<19>. intel的保护模式是在80386处理器中首次出现的  (错)


<20>. 页目录存放在( )中。 D

A.CR0

B.CR1

C.CR2

D.CR3

控制寄存器(Control Register)(CR0~CR3)用于控制和确定处理器的操作模式以及当前执行任务的特性。

CR0中含有控制处理器操作模式和状态的系统控制标志;

CR1保留不用;

CR2含有导致页错误的线性地址;

CR3中含有页目录表物理内存基地址,因此该寄存器也被称为页目录基地址寄存器PDBR(Page-Directory Base address Register)。

控制寄存器 CR*

微信截图_20230926005055.png

<21>. 一个32位虚拟地址被分为a、b、c三个域,其中a、b用于一个2级页表系统,c为页内偏移地址,则页面数为( )。D

A. a+b

B. a×b

C. 2a×b

D. 2a+b


<22>. 以下( )处理器不是冯诺伊曼体系(普林斯顿体系)结构   C(属于哈佛体系)

A. Intel X86

B. AMD

C. ARM

D. MIPS


<23>. 如下缩写,( )是中断描述符表  B

A. GDT

B. IDT

C. LDT

D. RPL


中断描述符表

中断机制和中断描述符表、中断和异常的处理

<23>. “段:偏移量”的形式描述的是( ) B

A. 物理地址

B. 虚拟地址

C. 线性地址

D. 段地址


目录
相关文章
|
3天前
|
安全 Linux
Linux通配符及其在文件搜索和管理中的应用
Linux通配符及其在文件搜索和管理中的应用
|
2天前
|
缓存 网络协议 算法
【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)
在Linux环境下,主要存在四种IO模型,它们分别是阻塞IO(Blocking IO)、非阻塞IO(Non-blocking IO)、IO多路复用(I/O Multiplexing)和异步IO(Asynchronous IO)。下面我将逐一介绍这些模型的定义:
|
4天前
|
监控 算法 Java
如何优化Java应用程序的内存管理
如何优化Java应用程序的内存管理
|
2天前
|
Linux 数据处理
Linux命令setarch深度解析与实际应用
`setarch`是Linux下用于调整程序执行环境的命令,它允许在不同CPU架构间运行二进制文件,模拟架构并设置CPU功能标志。通过指定`-a`参数切换架构,如`-a i386`,用`-R`参数启用或禁用如SSE2的功能。在测试兼容性、调试和优化时非常有用。注意正确设置参数,避免滥用,确保程序正常运行。查阅文档、逐步测试和考虑兼容性是最佳实践。
|
2天前
|
Linux Shell 数据处理
Linux命令seq的深入解析与应用
`seq`命令在Linux中用于生成数字序列,适用于数据处理和脚本编写。它支持自定义起始值、步长和结束值,可生成整数或浮点数。通过选项如`-f`(格式化输出)、`-s`(设置分隔符)、`-w`(宽度对齐)和`-r`(逆序)调整输出。在实践中,`seq`常与for循环结合,用于测试数据、文件命名等。注意增量为零会导致无限循环,格式和宽度选项不能同时使用。善用`seq`能提升命令行效率。
|
2天前
|
Linux 调度
部署02-我们一般接触的是Mos和Wimdows这两款操作系统,很少接触到Linux,操作系统的概述,硬件是由计算机系统中由电子和机械,光电元件所组成的,CPU,内存,硬盘,软件是用户与计算机接口之间
部署02-我们一般接触的是Mos和Wimdows这两款操作系统,很少接触到Linux,操作系统的概述,硬件是由计算机系统中由电子和机械,光电元件所组成的,CPU,内存,硬盘,软件是用户与计算机接口之间
|
3天前
|
监控 Unix Linux
Linux中AWK命令的高级应用与案例分析
Linux中AWK命令的高级应用与案例分析
|
4天前
|
监控 Linux
Linux脚本之监控系统内存使用情况并给予警告
Linux脚本之监控系统内存使用情况并给予警告
|
2月前
|
缓存 监控 Linux
linux 内存监控
linux 内存监控
27 1
|
存储 监控 Shell
Linux 性能监控之CPU&内存&I/O监控Shell脚本2
Linux 性能监控之CPU&内存&I/O监控Shell脚本2
456 0