大数据Flume企业开发实战

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Flume企业开发实战

1 复制和多路复用

1.1 案例需求

使用 Flume-1 监控文件变动,Flume-1 将变动内容传递给 Flume-2,Flume-2 负责存储

到 HDFS。同时 Flume-1 将变动内容传递给 Flume-3,Flume-3 负责输出到 LocalFileSystem。

1.2 需求分析:单数据源多出口案例(选择器

1.3 实现步骤

(1)准备工作

在/opt/module/flume/job 目录下创建 group1 文件夹

[bigdata@hadoop102 job]$ cd group1/

在/opt/module/datas/目录下创建 flume3 文件夹

[bigdata@hadoop102 datas]$ mkdir flume3

(2)创建 flume-file-flume.conf

配置 1 个接收日志文件的 source 和两个 channel、两个 sink,分别输送给 flume-flume-

hdfs 和 flume-flume-dir。

编辑配置文件

[bigdata@hadoop102 group1]$ vim flume-file-flume.conf

添加如下内容

# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有 channel
a1.sources.r1.selector.type = replicating
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
# sink 端的 avro 是一个数据发送者
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

(3)创建 flume-flume-hdfs.conf

配置上级 Flume 输出的 Source,输出是到 HDFS 的 Sink。

编辑配置文件

[bigdata@hadoop102 group1]$ vim flume-flume-hdfs.conf

添加如下内容

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
# source 端的 avro 是一个数据接收服务
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:9820/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k1.hdfs.rollCount = 0
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建 flume-flume-dir.conf

配置上级 Flume 输出的 Source,输出是到本地目录的 Sink。

编辑配置文件

[bigdata@hadoop102 group1]$ vim flume-flume-dir.conf

添加如下内容

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/data/flume3
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目

录。

(5)执行配置文件

分别启动对应的 flume 进程:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea3 --conf-file job/group1/flume-flume-dir.conf
[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea2 --conf-file job/group1/flume-flume-hdfs.conf
[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea1 --conf-file job/group1/flume-file-flume.conf

(6)启动 Hadoop 和 Hive

[bigdata@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[bigdata@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
[bigdata@hadoop102 hive]$ bin/hive
hive (default)>

(7)检查 HDFS 上数据

(8)检查/opt/module/datas/flume3 目录中数据

[bigdata@hadoop102 flume3]$ ll
总用量 8
-rw-rw-r--. 1 bigdata bigdata 5942 5 月 22 00:09 1526918887550-3

2 负载均衡和故障转移

2.1 案例需求

使用 Flume1 监控一个端口,其 sink 组中的 sink 分别对接 Flume2 和 Flume3,采用FailoverSinkProcessor,实现故障转移的功能。

2.2 需求分析:故障转移案例

2.3 实现步骤

(1)准备工作

在/opt/module/flume/job 目录下创建 group2 文件夹

[bigdata@hadoop102 job]$ cd group2/

(2)创建 flume-netcat-flume.conf

配置 1 个 netcat source 和 1 个 channel、1 个 sink group(2 个 sink),分别输送给

flume-flume-console1 和 flume-flume-console2。

编辑配置文件

[bigdata@hadoop102 group2]$ vim flume-netcat-flume.conf

添加如下内容

# Name the components on this agent
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

(3)创建 flume-flume-console1.conf

配置上级 Flume 输出的 Source,输出是到本地控制台。

编辑配置文件

[bigdata@hadoop102 group2]$ vim flume-flume-console1.conf

添加如下内容

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = logger
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建 flume-flume-console2.conf

配置上级 Flume 输出的 Source,输出是到本地控制台。

编辑配置文件

[bigdata@hadoop102 group2]$ vim flume-flume-console2.conf

添加如下内容

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

(5)执行配置文件

分别开启对应配置文件:flume-flume-console2,flume-flume-console1,flume-netcat-flume。

[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea3 --conf-file job/group2/flume-flume-console2.conf -
Dflume.root.logger=INFO,console
[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea2 --conf-file job/group2/flume-flume-console1.conf -
Dflume.root.logger=INFO,console
[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea1 --conf-file job/group2/flume-netcat-flume.conf

(6)使用 netcat 工具向本机的 44444 端口发送内容

$ nc localhost 44444

(7)查看 Flume2 及 Flume3 的控制台打印日志

(8)将 Flume2 kill,观察 Flume3 的控制台打印情况。

注:使用 jps - -l ml 查看 e Flume 进程。

3 聚合

3.1 案例需求

hadoop102 上的 Flume-1 监控文件/opt/module/group.log,hadoop103 上的 Flume-2 监控某一个端口的数据流,Flume-1 与 Flume-2 将数据发送给 hadoop104 上的 Flume-3,Flume-3 将最终数据打印

到控制台。

3.2 需求分析:多数据源汇总案例

3.3 实现步骤

(1)准备工作

分发 Flume

[bigdata@hadoop102 module]$ xsync flume

在 hadoop102、hadoop103 以及 hadoop104 的/opt/module/flume/job 目录下创建一个

group3 文件夹。

[bigdata@hadoop102 job]$ mkdir group3
[bigdata@hadoop103 job]$ mkdir group3
[bigdata@hadoop104 job]$ mkdir group3

(2)创建 flume1-logger-flume.conf

配置 Source 用于监控 hive.log 文件,配置 Sink 输出数据到下一级 Flume。

在 hadoop102 上编辑配置文件

[bigdata@hadoop102 group3]$ vim flume1-logger-flume.conf

添加如下内容

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/group.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop104
a1.sinks.k1.port = 4141
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)创建 flume2-netcat-flume.conf

配置 Source 监控端口 44444 数据流,配置 Sink 数据到下一级 Flume:

在 hadoop103 上编辑配置文件

[bigdata@hadoop102 group3]$ vim flume2-netcat-flume.conf

添加如下内容

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = hadoop103
a2.sources.r1.port = 44444
# Describe the sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = hadoop104
a2.sinks.k1.port = 4141
# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4) 创建 flume3- - flume- - logger.conf

配置 source 用于接收 flume1 与 flume2 发送过来的数据流,最终合并后 sink 到控制

台。

在 hadoop104 上编辑配置文件

[bigdata@hadoop104 group3]$ touch flume3-flume-logger.conf
[bigdata@hadoop104 group3]$ vim flume3-flume-logger.conf

添加如下内容

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop104
a3.sources.r1.port = 4141
# Describe the sink
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)执行配置文件

分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。

[bigdata@hadoop104 flume]$ bin/flume-ng agent --conf conf/ --namea3 --conf-file job/group3/flume3-flume-logger.conf -
Dflume.root.logger=INFO,console
[bigdata@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --namea2 --conf-file job/group3/flume1-logger-flume.conf
[bigdata@hadoop103 flume]$ bin/flume-ng agent --conf conf/ --namea1 --conf-file job/group3/flume2-netcat-flume.conf

(6)在 hadoop103 上向/opt/module 目录下的 group.log 追加内容

[bigdata@hadoop103 module]$ echo 'hello' > group.log

(7)在 hadoop102 上向 44444 端口发送数据

[bigdata@hadoop102 flume]$ telnet hadoop102 44444

(8)检查 hadoop104 上数据

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
154 0
|
4月前
|
存储 SQL 分布式计算
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
175 19
|
4月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
28天前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
4月前
|
数据采集 人工智能 大数据
大数据+商业智能=精准决策,企业的秘密武器
大数据+商业智能=精准决策,企业的秘密武器
155 27
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
用大数据重塑客户关系管理:聪明企业的秘密武器
用大数据重塑客户关系管理:聪明企业的秘密武器
105 9
|
7月前
|
SQL 缓存 数据处理
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
312 3
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)

热门文章

最新文章