Dubbo分布式服务接口的幂等性防止重复扣款

简介: Dubbo分布式服务接口的幂等性防止重复扣款

1 问题分析:

分布式服务接口的幂等性如何设计(比如不能重复扣款)?


从这个问题开始,面试官就已经进入了实际的生产问题的面试了。


一个分布式系统中的某个接口,该如何保证幂等性?这个事儿其实是你做分布式系统的时候必须要考虑的一个生产环境的技术问题。啥意思呢?


你看,假如你有个服务提供一些接口供外部调用,这个服务部署在了 5 台机器上,接着有个接口就是付款接口。然后人家用户在前端上操作的时候,不知道为啥,总之就是一个订单不小心发起了两次支付请求,然后这俩请求分散在了这个服务部署的不同的机器上,好了,结果一个订单扣款扣两次。


或者是订单系统调用支付系统进行支付,结果不小心因为网络超时了,然后订单系统走了前面我们看到的那个重试机制,咔嚓给你重试了一把,好,支付系统收到一个支付请求两次,而且因为负载均衡算法落在了不同的机器上,尴尬了。。。


所以你肯定得知道这事儿,否则你做出来的分布式系统恐怕容易埋坑。


2 面试题回答:

这个不是技术问题,这个没有通用的一个方法,这个应该结合业务来保证幂等性。


所谓幂等性,就是说一个接口,多次发起同一个请求,你这个接口得保证结果是准确的,比如不能多扣款、不能多插入一条数据、不能将统计值多加了 1。这就是幂等性。


其实保证幂等性主要是三点:


对于每个请求必须有一个唯一的标识,举个栗子:订单支付请求,肯定得包含订单 id,一个订单 id 最多支付一次,对吧。

每次处理完请求之后,必须有一个记录标识这个请求处理过了。常见的方案是在 mysql 中记录个状态啥的,比如支付之前记录一条这个订单的支付流水。

每次接收请求需要进行判断,判断之前是否处理过。比如说,如果有一个订单已经支付了,就已经有了一条支付流水,那么如果重复发送这个请求,则此时先插入支付流水,orderId 已经存在了,唯一键约束生效,报错插入不进去的。然后你就不用再扣款了。

实际运作过程中,你要结合自己的业务来,比如说利用 redis,用 orderId 作为唯一键。只有成功插入这个支付流水,才可以执行实际的支付扣款。


要求是支付一个订单,必须插入一条支付流水,order_id 建一个唯一键 unique key。你在支付一个订单之前,先插入一条支付流水,order_id 就已经进去了。你就可以写一个标识到 redis 里面去,set order_id payed,下一次重复请求过来了,先查 redis 的 order_id 对应的 value,如果是 payed 就说明已经支付过了,你就别重复支付了。


目录
相关文章
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
172 3
|
23天前
|
Dubbo 应用服务中间件 API
使用 Apifox、Postman 测试 Dubbo 服务,Apache Dubbo OpenAPI 即将发布
Apache Dubbo 3.3.3(即将发布)实现了与 OpenAPI 的深度集成,通过与 OpenAPI 的深度集成,用户能够体验到从文档生成到接口调试、测试和优化的全流程自动化支持。不论是减少手动工作量、提升开发效率,还是支持多语言和多环境,Dubbo 3.3.3 都展现了其对开发者体验的极大关注。结合强大的 Mock 数据生成和自动化测试能力,这一版本为开发者提供了极具竞争力的服务治理解决方案。如果你正在寻找高效、易用的微服务框架,Dubbo 3.3.3 将是你不容错过的选择。
|
6月前
|
存储 监控 负载均衡
检索服务elasticsearch分布式结构
【8月更文挑战第22天】
62 3
|
2月前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
73 11
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
109 2
|
4月前
|
监控 Dubbo Java
dubbo学习三:springboot整合dubbo+zookeeper,并使用dubbo管理界面监控服务是否注册到zookeeper上。
这篇文章详细介绍了如何将Spring Boot与Dubbo和Zookeeper整合,并通过Dubbo管理界面监控服务注册情况。
290 0
dubbo学习三:springboot整合dubbo+zookeeper,并使用dubbo管理界面监控服务是否注册到zookeeper上。
|
5月前
|
数据采集 分布式计算 MaxCompute
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
133 3
|
6月前
|
JSON Dubbo Java
【Dubbo协议指南】揭秘高性能服务通信,选择最佳协议的终极攻略!
【8月更文挑战第24天】在分布式服务架构中,Apache Dubbo作为一款高性能的Java RPC框架,支持多种通信协议,包括Dubbo协议、HTTP协议及Hessian协议等。Dubbo协议是默认选择,采用NIO异步通讯,适用于高要求的内部服务通信。HTTP协议通用性强,利于跨语言调用;Hessian协议则在数据传输效率上有优势。选择合适协议需综合考虑性能需求、序列化方式、网络环境及安全性等因素。通过合理配置,可实现服务性能最优化及系统可靠性提升。
91 3
|
6月前
|
C# 开发者 Windows
勇敢迈出第一步:手把手教你如何在WPF开源项目中贡献你的第一行代码,从选择项目到提交PR的全过程解析与实战技巧分享
【8月更文挑战第31天】本文指导您如何在Windows Presentation Foundation(WPF)相关的开源项目中贡献代码。无论您是初学者还是有经验的开发者,参与这类项目都能加深对WPF框架的理解并拓展职业履历。文章推荐了一些适合入门的项目如MvvmLight和MahApps.Metro,并详细介绍了从选择项目、设置开发环境到提交代码的全过程。通过具体示例,如添加按钮点击事件处理程序,帮助您迈出第一步。此外,还强调了提交Pull Request时保持专业沟通的重要性。参与开源不仅能提升技能,还能促进社区交流。
67 0
|
6月前
|
Java 应用服务中间件 数据库
SpringCloud:服务保护和分布式事务详解
SpringCloud:服务保护和分布式事务详解
152 0