体验实验室 的 性能荟萃

简介: rt每天体验次数有限!

Linux指令入门-文件管理:no gui
Linux指令入门-系统管理: only gui desktop,no terminal interface. no info about pub-ip/name/password etc

可ssh;

可上网;

有GUI桌面;

root;

Centos 7.7 x64;

CPU 2.5G 1线程, Xeon 8269CY;

RAM 1-0.2 GB;

Disk 40-2 GB;

Desktop界面的主机似乎都很牛,共48核96线程2颗U,192GB内存。但没法ssh,没法获得root权限。但是,似乎可以通过反向ssh与Terminal界面或远程用户连上。

Terminal界面则是上面的配置,真正分配给用户的,有root权限,可ssh。

Desktop的信息:

name: u-fzufncqe@1300671854401182

ping: Rd8Va4Ep9In8Rt2B

AK ID: LTAI5tFBjZhTdLQ9RCMVWvNH

AK secret: hYZdQLyhOCB8JTfZgl3X44nNn9vZ6S

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
47 4
|
4月前
|
人工智能
AI设计自己,代码造物主已来!UBC华人一作首提ADAS,数学能力暴涨25.9%
【9月更文挑战第15天】近年来,人工智能领域取得了显著进展,但智能体系统的设计仍需大量人力与专业知识。为解决这一问题,UBC研究人员提出了“自动智能体系统设计(ADAS)”新方法,通过基于代码的元智能体实现智能体系统的自动化设计与优化。实验结果表明,ADAS设计的智能体在多个领域中表现优异,尤其在阅读理解和数学任务上取得了显著提升。尽管如此,ADAS仍面临安全性、可扩展性和效率等挑战,需进一步研究解决。论文详情见链接:https://arxiv.org/pdf/2408.08435。
69 4
|
4月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
100 2
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
104 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
85 2
|
6月前
|
人工智能 搜索推荐 UED
稳居C位的AIGC,真能让人人都成“设计大神”?
在数字化时代,AIGC助力设计效率提升,尤其在UI设计中,但它无法替代深层创意与情感。设计师应精通工具而不受其限制,Adobe国际认证强调了这方面的专业素养。尽管AIGC能生成设计方案,但理解用户、创新思考与艺术追求仍是设计师不可或缺的能力。因此,设计师需持续学习和提升,以保持竞争力。
|
机器学习/深度学习 编解码 PHP
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(2)
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(2)
304 0
|
人工智能 PHP 开发者
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(1)
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了
275 0
|
编解码
超越感官,沉浸赛场——大型体育赛事云上实战精选-卷首语
超越感官,沉浸赛场——大型体育赛事云上实战精选
136 0
|
边缘计算 运维 算法
超越感官,沉浸赛场——大型体育赛事云上实战精选-第六章 CUBA:“自由视角”的畅快赛事-5G+边缘计算+自由视角,让体育赛事更畅快
超越感官,沉浸赛场——大型体育赛事云上实战精选-第六章 CUBA:“自由视角”的畅快赛事-5G+边缘计算+自由视角,让体育赛事更畅快
239 0