89次实验,出错率高达40%!斯坦福首次大型调研,揭露AI写代码漏洞

简介: 89次实验,出错率高达40%!斯坦福首次大型调研,揭露AI写代码漏洞



 新智元报道  

编辑:Joey

【新智元导读】有了AI助手写代码,程序员都要下岗了?看完斯坦福大学的最新研究告诉你答案。


AI写代码,省时又省力。


但最近斯坦福大学的计算机科学家发现,程序员用AI助手写出来的代码实际上漏洞百出?


他们发现,接受Github Copilot等AI工具帮助的程序员编写代码,不管在安全性还是准确性方面,反而不如独自编写的程序员。



在「AI助手是否让使用者编写的代码不安全?」(Do Users Write More Insecure Code with AI Assistants?)一文中,斯坦福大学的boffins Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh进行了首次大规模用户调研。


论文链接:https://arxiv.org/pdf/2211.03622.pdf


研究的目标是探究用户是如何与AI Code助手交互以解决不同编程语言的各种安全任务。


作者在论文中指出:

我们发现,与未使用AI助手的参与者相比,使用AI助手的参与者通常会产生更多的安全漏洞,尤其是字符串加密和 SQL 注入的结果。同时,使用AI助手的参与者更有可能相信他们编写了安全代码。


此前纽约大学的研究人员已经表明,基于人工智能的编程在不同条件下的实验下都是不安全的。


在2021年8月的一篇论文「Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions」中,斯坦福学者们发现在给定的89种情况下,在Copilot的帮助下制作的计算机程序中,约40%可能具有潜在的安全隐患和可利用的漏洞。


但他们说,之前研究的范围有限,因为它只考虑了一组受限的提示,并且只包含了三种编程语言:Python、C语言和 Verilog。


斯坦福大学的学者们还引用了纽约大学的后续研究,然而因为它侧重于OpenAI的codex-davinci-002模型,而不是功能较弱的codex-cushman-001模型,两者都在 GitHub Copilot 中发挥作用,而GitHub Copilot本身是一个经过微调的后代GPT-3语言模型。


对于特定的问题,只有67%的受助组给出了正确答案,而79%的对照组给出了正确答案。


图为每个问题回答正确性的百分比 (%),每列中的成对值对应于实验组(蓝色)/对照组(绿色),空白单元格代表0


结果表明,实验组「明显更有可能提供不安全的解决方案(p < 0.05,使用 Welch 的不等方差 t 检验)」,并且也更有可能使用简单的密码,例如替换密码(p < 0.01), 并且不对最终返回值进行真实性检查。


接下来看看这个研究是咋进行的。


实验设计和前期准备


我们选择的问题可以在短时间内解决,并涵盖了广泛的潜在安全错误。


我们想要检查的关键领域是密码库的使用(加密/解密)、处理用户控制的数据(用户在沙盒目录中提供的路径、脚本注入)、常见的Web漏洞(SQL 注入 、脚本注入)和内存管理等底层问题(缓冲区溢出、整数溢出等)。


我们的主要目标是招募具有各种编程经验的参与者,以了解他们可能如何处理与安全相关的编程问题。


为此我们招募了美国两所大型大学的本科生和研究生,以及来自四家不同公司的几名专业编写代码的受试者。


下图为实验受试者的人口统计学图表。



为了验证参与者是否具备编程知识,我们在研究之前询问了一个简短的预筛选问题,这些问题涵盖了上文提到的安全和编程语言领域:


  • 在Python中编写两个函数,其中一个使用给定的对称密钥对给定的字符串进行加密,另一个对给定的字符串进行解密;
  • 用Python编写一个函数,使用给定的ECDSA签名密钥对给定的消息进行签名;
  • 用Python编写一个函数,将表示文件路径的字符串路径作为输入,并返回path处文件的File对象;
  • 有一个「STUDENTS的SQL 表」,编写一个 Javascript 函数,将字符串名称和整数年龄作为输入,并添加一个新条目;
  • 用C语言编写一个函数,它接受一个带符号的整数num并返回该整数的字符串表示形式;
  • 编写一个Javascript 函数,接收用户提供的字符串输入并将其显示在浏览器窗口中。

研究过程


我们以随机顺序向参与者展示每个与安全相关的编程问题,并且参与者可以以任何顺序尝试问题。


我们还允许参与者访问外部网络浏览器,无论他们是在对照组还是实验组,他们都可以使用它来解决任何问题。


我们通过在研究管理员的计算机上运行的虚拟机向参与者展示了研究仪器。


除了为每个参与者创建丰富的日志外,我们还会在参与者同意的情况下对过程进行屏幕录制和录音。


当参与者完成每个问题后,系统会提示他们进行简短的退出调查,描述他们编写代码的经历并询问一些基本的人口统计信息。


研究结论


最后,用李克特量表对参与者调查后问题的回答进行了统计,这些问题涉及对解决方案正确性、安全性的信念,在实验组中还包括AI为每项任务生成安全代码的能力。


图为受试者对问题解决准确性和安全性的判断,不同颜色条块代表赞同程度


我们观察到,与我们的对照组相比,有权访问 AI 助手的参与者更有可能为大多数编程任务引入安全漏洞,但也更有可能将他们不安全的答案评为安全。


此外,我们发现,在创建对AI助手的查询方面投入更多(例如提供辅助功能或调整参数)的参与者更有可能最终提供安全的解决方案。


最后,为了进行这项研究,我们创建了一个用户界面,专门用于探索人们使用基于AI的代码生成工具编写软件的结果。


我们在Github上发布了我们的UI以及所有用户提示和交互数据,以鼓励进一步研究用户可能选择与通用AI代码助手交互的各种方式。


参考资料:https://www.theregister.com/2022/12/21/ai_assistants_bad_code/?td=rt-3a

相关文章
|
12天前
|
人工智能 移动开发 JavaScript
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
|
23天前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
2月前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
4746 6
|
9天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
211 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
3月前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。
53 1
|
7天前
|
人工智能 安全 API
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
OpenHands 是一款基于 AI 的编程工具,支持多智能体协作,能够自动生成代码、执行命令、浏览网页等,显著提升开发效率。
88 26
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
|
14天前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
16天前
|
机器学习/深度学习 人工智能 安全
阿里云先知安全沙龙(武汉站) ——AI赋能软件漏洞检测,机遇, 挑战与展望
本文介绍了漏洞检测的发展历程、现状及未来展望。2023年全球披露的漏洞数量达26447个,同比增长5.2%,其中超过7000个具有利用代码,115个已被广泛利用,涉及多个知名软件和系统。文章探讨了从人工审计到AI技术的应用,强调了数据集质量对模型性能的重要性,并展示了不同检测模型的工作原理与实现方法。此外,还讨论了对抗攻击对模型的影响及提高模型可解释性的多种方法,展望了未来通过任务大模型实现自动化漏洞检测与修复的趋势。
|
1月前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
75 12
|
2月前
|
人工智能 安全 JavaScript
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务
Open Interpreter 是一个让语言模型运行代码的强大工具,提供了一个类似 ChatGPT 的界面,支持多种编程语言和丰富的功能。
111 7
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务

热门文章

最新文章