第7章 符号计算——7.7 符号积分变换

简介: 第7章 符号计算——7.7 符号积分变换

7.7  符号积分变换


在数学中,为了把较复杂的运算转换为比较简单的运算,经常采用一种变换手段。例如数量的乘积或商可以变换成对数的和或差,然后再取反对数即可求得原来数量的乘积或商。这一变换方法的目的就是把比较复杂的乘除运算通过对数变换转换为简单的加减运算。

所谓积分变换,就是通过积分运算,把一类函数A变换成另一类函数B,函数B一般是含有参量α的积分:。这一变换的目的就是把某函数类A中的函数f(t)通过积分运算变成另一类函数B中的函数F(α)。这里K(t,α)是一个确定的二元函数,叫作积分变换的核。当选取不同的积分区间与变换核时,就成为不同的积分变换。f(t)叫作原函数,F(α)叫作象函数。在一定条件下,原函数与象函数两者一一对应,成为一个积分变换对。变换是可逆的,由原函数求象函数叫作正变换,反之则是逆变换。

积分变换的理论与方法,在自然科学与工程技术的各个领域中都有着极其广泛的应用,成为不可缺少的运算工具。变换的使用会极大地简化计算,有的变换则为开创新的学科奠定了基础。


7.7.1  傅里叶变换及其反变换


时域中的f(t)与它在频域中的Fourier变换F(ω)之间存在如下关系:

59224f00132ca8b353d204c52190dd04_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg


由计算机完成这种变换的途径有两条:一是直接调用指令fourierifourier进行;二是根据上面的定义,利用积分指令int实现。下面只介绍fourierifourier指令的使用及相关注意事项,至于如何根据定义求变换,请读者自己完成。

● Fw=fourier(ft,t,w):求时域函数ftFourier变换Fwft是以t为自变量的时域函数,Fw是以圆频率w为自变量的频域函数。

● ft=ifourier(Fw,w,t):求频域函数FwFourier反变换ftft是以t为自变量的时域函数,Fw是以圆频率w为自变量的频域函数。


7-30:傅里叶变换示例。

在命令行窗口中输入:

syms t w real;
f = sym(cos(t) * sin(t))
fourier(f, t, w)

输出结果:

f =
cos(t)*sin(t)
ans =
-(pi*(dirac(w - 2) - dirac(w + 2))*1i)/2


在命令行窗口中输入:

ifourier(ans, w, t)

输出结果:

ans =
(exp(-t*2i)*1i)/4 - (exp(t*2i)*1i)/4


在命令行窗口中输入:

simplify(ans)

输出结果:

ans =
sin(2*t)/2


7.7.2  拉普拉斯变换及其反变换


Laplace变换及其反变换的定义为:

1bc5501e57e731343c76507296e2e1e9_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg


Fourier变换相似,Laplace变换与反变换的实现也有两条途径:直接调用指令laplaceilaplace;或者根据上面的定义,利用积分指令int实现。相较而言,直接使用laplaceilaplace指令实现变换较为简洁。具体的调用格式如下。

● Fs=laplace(ft,t,s):求时域函数ftLaplace变换Fsft是以t为自变量的时域函数,Fs是以复频率s为自变量的频域函数。

● ft=ilaplace(Fs,s,t):求频域函数FsLaplace反变换ftft是以t为自变量的时域函数,Fs是以复频率s为自变量的频域函数。


7-31:拉普拉斯变换示例。

在命令行窗口中输入:

syms s t;
syms a positive;
f = sym(exp(2 * t) + 5 * dirac(a - t))
laplace(f, t, s)

输出结果:

f =
exp(2*t) + 5*dirac(a - t)
ans =
5*exp(-a*s) + 1/(s - 2)

在命令行窗口中输入:

ilaplace(ans, s, t)

输出结果:

ans =
exp(2*t) + 5*dirac(a - t)


7.7.3  Z变换及其反变换


一个离散因果序列的Z变换及其反变换定义为:

f552df13a4e43b5012cb615dcf3403ff_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg


涉及Z反变换具体计算的常见方法有3种,分别是幂级数展开法、部分分式展开法和围线积分法。MATLAB的符号数学工具箱中采用围线积分法设计求Z反变换的iztrans指令,相应的数学表达式是:

ad4b8910fe7701ea2d9b4d5f68e2c62a_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

具体的调用格式如下。

● FZ=ztrans(fn):求时域函数fnZ变换FZ,默认fn是变量n的函数,生成的Z变换是以复频率z为变量的函数。

● FZ=ztrans(fn,w):求时域函数fnZ变换FZ,默认fn是变量n的函数,生成的Z变换是以变量w来代替复频率z的函数。

● FZ=ztrans(fn,n,z):求时域函数fnZ变换FZfn是以n为自变量的时域序列,FZ是以复频率z为自变量的频域函数。

● fn=iztrans(FZ,z,n):求频域函数FZZ反变换fnfn是以n为自变量的时域序列,FZ是以复频率z为自变量的频域函数。


7-32Z变换示例。

在命令行窗口中输入:

syms n;
f = sym(n^3 + n^2 + n + 1)
ztrans(f)

输出结果:

f =
n^3 + n^2 + n + 1
ans =
z/(z - 1) + z/(z - 1)^2 + (z*(z^2 + 4*z + 1))/(z - 1)^4 + (z*(z + 1))/(z - 1)^3

在命令行窗口中输入:

clear
syms a b n w;
f = sym(sin(a * n) + cos(b * n))
ztrans(f, w)

输出结果:

f =
cos(b*n) + sin(a*n)
ans =
(w*(w - cos(b)))/(w^2 - 2*cos(b)*w + 1) + (w*sin(a))/(w^2 - 2*cos(a)*w + 1)


在命令行窗口中输入:

ztrans(f, a, w)

输出结果:

ans =
(w*cos(b*n))/(w - 1) + (w*sin(n))/(w^2 - 2*cos(n)*w + 1)


在命令行窗口中输入:

iztrans(ans, w, n)

输出结果:

ans =
sin(n^2) - cos(b*n)*(kroneckerDelta(n, 0) - 1) + cos(b*n)*kroneckerDelta(n, 0)

相关文章
|
5月前
|
算法框架/工具
第4章-变换-4.2-特殊矩阵变换和运算
第4章-变换-4.2-特殊矩阵变换和运算
22 0
|
7月前
|
机器学习/深度学习 算法 Serverless
利用无穷级数逼近计算幂运算与开根号——Python实现
使用泰勒级数逼近法,本文介绍了如何用Python计算特殊幂运算,包括分数次幂和开根号。通过定义辅助函数,如`exp`、`getN_minus_n`、`multi`和`getnum`,实现了计算任意实数次幂的功能。实验结果显示,算法能有效计算不同情况下的幂运算,例如`0.09^2`、`1^2`、`0.25^2`、`0.09^(0.5)`、`1^(0.5)`和`0.25^(0.5)`。虽然精度可能有限,但可通过调整迭代次数平衡精度与计算速度。
|
7月前
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
88 0
|
8月前
|
存储 算法 Python
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交(2)
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交(2)
|
8月前
|
Python
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交
|
8月前
|
存储 算法 Python
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交(1)
【Python 百练成钢】高精度加法、阶乘计算、矩阵幂运算、矩阵面积交(1)
|
C语言
C语言:已知三角形三边长,计算面积 —— 海伦公式
C语言:已知三角形三边长,计算面积 —— 海伦公式
第7章 符号计算——7.8 符号代数方程求解
第7章 符号计算——7.8 符号代数方程求解
第7章 符号计算——7.9 符号微分方程求解
第7章 符号计算——7.9 符号微分方程求解
|
存储 人工智能 算法
【高精度加减乘除法、一维二维前缀和&&差分】思路讲解及代码实现
用一篇Blog来讲解下最近学到的高精度加减乘除法、一维二维前缀和&&差分等算法,为日后的刷题打下坚实的基础。
108 0

热门文章

最新文章