Python爬虫进阶:使用Scrapy库进行数据提取和处理

简介: 在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。
+关注继续查看

在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。

一、数据提取:Selectors和Item

在Scrapy中,提取数据主要通过Selectors来完成。Selectors基于XPath或CSS表达式的查询语言来选取HTML文档中的元素。你可以在你的爬虫中使用response对象的xpathcss方法来创建一个Selector对象。

例如,我们可以修改我们的QuotesSpider爬虫,使用Selectors来提取每个引用的文本和作者:

import scrapy

class QuotesSpider(scrapy.Spider):
    name = "quotes"

    start_urls = [
        'http://quotes.toscrape.com/page/1/',
    ]

    def parse(self, response):
        for quote in response.css('div.quote'):
            text = quote.css('span.text::text').get()
            author = quote.css('span small::text').get()
            print(f'Text: {text}, Author: {author}')

此外,Scrapy还提供了Item类,可以定义你想要收集的数据结构。Item类非常适合收集结构化数据,如我们从quotes.toscrape.com中获取的引用:

import scrapy

class QuoteItem(scrapy.Item):
    text = scrapy.Field()
    author = scrapy.Field()

然后我们可以修改QuotesSpider爬虫,使其生成和收集QuoteItem对象:

class QuotesSpider(scrapy.Spider):
    name = "quotes"

    start_urls = [
        'http://quotes.toscrape.com/page/1/',
    ]

    def parse(self, response):
        for quote in response.css('div.quote'):
            item = QuoteItem()
            item['text'] = quote.css('span.text::text').get()
            item['author'] = quote.css('span small::text').get()
            yield item

二、数据处理:Pipelines

Scrapy使用数据管道(pipelines)来处理爬虫从网页中抓取的Item。当爬虫生成一个Item,它将被发送到Item Pipeline进行处理。

Item Pipeline是一些按照执行顺序排列的类,每个类都是一个数据处理单元。每个Item Pipeline组件都是一个Python类,必须实现一个process_item方法。这个方法必须返回一个Item对象,或者抛出DropItem异常,被丢弃的item将不会被之后的pipeline组件所处理。

例如,我们可以添加一个Pipeline,将收集的引用保存到JSON文件中:

import json

class JsonWriterPipeline(object):

    def open_spider(self, spider):
        self.file = open('quotes.jl', 'w')

    def close_spider(self, spider):
        self.file.close()

    def process_item(self, item, spider):
        line = json.dumps(dict(item)) + "\n"
        self.file.write(line)
        return item

然后你需要在项目的设置文件(settings.py)中启用你的Pipeline:

ITEM_PIPELINES = {
   'tutorial.pipelines.JsonWriterPipeline': 1,
}

在这篇文章中,我们更深入地探讨了Scrapy的功能,包括如何使用Selectors和Item提取数据,如何使用Pipelines处理数据。在下一篇文章中,我们将学习如何使用Scrapy处理更复杂的情况,如登录、cookies、以及如何避免爬虫被网站识别和封锁等问题。

相关文章
|
19小时前
|
SQL 数据可视化 数据挖掘
强大且灵活的Python数据处理和分析库:Pandas
强大且灵活的Python数据处理和分析库:Pandas
10 1
|
19小时前
|
数据可视化 搜索推荐 数据挖掘
Matplotlib库在Python数据分析中的应用
Matplotlib库在Python数据分析中的应用
12 1
|
1天前
|
机器学习/深度学习 数据可视化 数据挖掘
一个基于Matplotlib的Python数据可视化库:Seaborn
一个基于Matplotlib的Python数据可视化库:Seaborn
14 1
|
2天前
|
Shell Linux Python
关于Python安装Scrapy库的常见报错解决
关于Python安装Scrapy库的常见报错解决
11 0
|
2天前
|
安全 Python
Python环境配置及基础用法&Pycharm库安装与背景设置及避免Venv文件夹
Python环境配置及基础用法&Pycharm库安装与背景设置及避免Venv文件夹
23 1
|
7天前
|
缓存 Python
Python中的装饰器进阶:使用functools库提升装饰器的灵活性
装饰器是Python中强大而灵活的工具,它允许你在不修改函数代码的情况下,增强函数的功能。在本文中,我们将深入研究装饰器,并介绍如何使用`functools`库提升装饰器的灵活性和功能
|
9天前
|
监控 Unix Linux
[linux性能优化]python第三方库-PSUtil库
PSUtil库是Python的一个第三方库,它可以访问各种系统信息和资源利用率,如CPU,内存,磁盘,网络接口,进程等。在Linux、Windows、Mac OS X、FreeBSD等操作系统中,PSUtil提供了一致的接口,这使得它成为了Python系统管理和监控的有力工具。
|
13天前
|
数据采集 JavaScript 前端开发
Web爬虫开发指南:使用Python的BeautifulSoup和Requests库
Web爬虫是一种从互联网上获取数据的自动化工具,它可以用于抓取网页内容、提取信息和分析数据。Python提供了一些强大的库,其中BeautifulSoup和Requests是两个常用的工具,用于解析HTML内容和发起HTTP请求。本文将介绍如何使用BeautifulSoup和Requests库构建一个简单而有效的Web爬虫。
|
14天前
|
算法 数据可视化 API
Python用于复杂网络NetworkX库
NetworkX是一个功能强大的Python库,用于创建、操作和研究复杂网络。它提供了一系列工具和算法,可以帮助我们更好地理解和分析图形结构。本文将详细介绍NetworkX库的主要功能和用法,并探讨一些实际应用案例。
|
14天前
|
供应链 数据挖掘 Python
Python功能强大、灵活可扩展的Statsmodels库
Statsmodels是一个功能强大、灵活可扩展的Python库,用于进行统计建模和数据分析。它提供了一系列丰富的统计模型和方法,可以帮助研究人员和数据科学家在Python环境中进行高级统计分析。
相关产品
云迁移中心
推荐文章
更多