蚂蚁金服Java研发岗二面:说说HashMap 中的容量与扩容实现

简介: JDK1.8 中 HashMap 的底层实现,我相信大家都能说上来个 一二,底层数据结构 数组 + 链表(或红黑树) ,源码如下

JDK1.8 中 HashMap 的底层实现,我相信大家都能说上来个 一二,底层数据结构 数组 + 链表(或红黑树) ,源码如下

/**
 * 数组
 */
transient Node<K,V>[] table;
/**
 * 链表结构
 */
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
/**
 * 红黑树结构
 */
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    ...

但面试往往会问的比较细,例如下面的容量问题,我们能答上来几个?

1、table 的初始化时机是什么时候,初始化的 table.length 是多少、阀值(threshold)是多少,实际能容下多少元素

2、什么时候触发扩容,扩容之后的 table.length、阀值各是多少?

3、table 的 length 为什么是 2 的 n 次幂

4、求索引的时候为什么是:h&(length-1),而不是 h&length,更不是 h%length

5、 Map map = new HashMap(1000); 当我们存入多少个元素时会触发map的扩容;Map map1 = new HashMap(10000); 我们存入第 10001个元素时会触发 map1 扩容吗

6、为什么加载因子的默认值是 0.75,并且不推荐我们修改

由于我们平时关注的少,一旦碰上这样的 连击 + 暴击,我们往往不知所措、无从应对;接下来我们看看上面的 6 个问题,是不是真的难到无法理解 ,还是我们不够细心、在自信的自我认为

斗智斗勇,见招拆招

上述的问题,我们如何去找答案 ? 方式有很多种,用的最多的,我想应该是上网查资料、看别人的博客,但我认为最有效、准确的方式是读源码

问题 1:table 的初始化

HashMap 的构造方法有如下 4 种

/**
 * 构造方法 1
 *
 * 通过 指定的 initialCapacity 和 loadFactor 实例化一个空的 HashMap 对象
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}
/**
 * 构造方法 2
 *
 * 通过指定的 initialCapacity 和 默认的 loadFactor(0.75) 实例化一个空的 HashMap 对象
 */
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
 * 构造方法 3
 *
 * 通过默认的 initialCapacity 和 默认的 loadFactor(0.75) 实例化一个空的 HashMap 对象
 */
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
 *
 * 构造方法 4
 * 通过指定的 Map 对象实例化一个 HashMap 对象
 */
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

构造方式 4 和 构造方式 1 实际应用的不多,构造方式 2 直接调用的 1(底层实现完全一致),构造方式 2 和 构造方式 3 比较常用,而最常用的是构造方式 3;此时我们以构造方式 3 为前提来分析,而构造方式 2 我们则在问题 5 中来分析

使用方式 1 实例化 HashMap 的时候,table 并未进行初始化,那 table 是何时进行初始化的了 ?平时我们是如何使用 HashMap 的,先实例化、然后 put、然后进行其他操作,如下

Map<String,Object> map = new HashMap();
map.put("name", "张三");
map.put("age", 21);
// 后续操作
...

既然实例化的时候未进行 table 的初始化,那是不是在 put 的时候初始化的了,我们来确认下

resize() 初始化 table 或 对 table 进行双倍扩容,源码如下(注意看注释)

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;                    // 第一次 put 的时候,table = null
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // oldCap = 0
    int oldThr = threshold;                        // threshold=0, oldThr = 0
    int newCap, newThr = 0;
    if (oldCap > 0) {    // 条件不满足,往下走
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults 走到这里,进行默认初始化
        newCap = DEFAULT_INITIAL_CAPACITY;    // DEFAULT_INITIAL_CAPACITY = 1 << 4 = 16, newCap = 16;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);    // newThr = 0.75 * 16 = 12;
    }
    if (newThr == 0) {    // 条件不满足
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;        // threshold = 12; 重置阀值为12
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];     // 初始化 newTab, length = 16;
    table = newTab;            // table 初始化完成, length = 16;
    if (oldTab != null) {    // 此时条件不满足,后续扩容的时候,走此if分支 将数组元素复制到新数组
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;    // 新数组
}

自此,问题 1 的答案就明了了

table 的初始化时机是什么时候

一般情况下,在第一次 put 的时候,调用 resize 方法进行 table 的初始化(懒初始化,懒加载思想在很多框架中都有应用!)

初始化的 table.length 是多少、阀值(threshold)是多少,实际能容下多少元素

  • 默认情况下,table.length = 16; 指定了 initialCapacity 的情况放到问题 5 中分析
  • 默认情况下,threshold = 12; 指定了 initialCapacity 的情况放到问题 5 中分析
  • 默认情况下,能存放 12 个元素,当存放第 13 个元素后进行扩容

问题 2 :table 的扩容

putVal 源码如下

/**
 * Implements Map.put and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)             // 当size(已存放元素个数) > thrshold(阀值),进行扩容
        resize();
    afterNodeInsertion(evict);
    return null;
}

还是调用 resize() 进行扩容,但与初始化时不同(注意看注释)

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;                    // 此时的 table != null,oldTab 指向旧的 table
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // oldCap = table.length; 第一次扩容时是 16
    int oldThr = threshold;                        // threshold=12, oldThr = 12;
    int newCap, newThr = 0;
    if (oldCap > 0) {    // 条件满足,走此分支
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&    // oldCap左移一位; newCap = 16 << 1 = 32;
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold            // newThr = 12 << 1 = 24;
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;    // DEFAULT_INITIAL_CAPACITY = 1 << 4 = 16, newCap = 16;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {    // 条件不满足
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;        // threshold = newThr = 24; 重置阀值为 24
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];     // 初始化 newTab, length = 32;
    table = newTab;            // table 指向 newTab, length = 32;
    if (oldTab != null) {    // 扩容后,将 oldTab(旧table) 中的元素移到 newTab(新table)中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;        // 
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

自此,问题 2 的答案也就清晰了

什么时候触发扩容,扩容之后的 table.length、阀值各是多少

  • 当 size > threshold 的时候进行扩容
  • 扩容之后的 table.length = 旧 table.length * 2,
  • 扩容之后的 threshold = 旧 threshold * 2

问题 3、4 :2 的 n 次幂

table 是一个数组,那么如何最快的将元素 e 放入数组 ?当然是找到元素 e 在 table 中对应的位置 index ,然后 table[index] = e; 就好了;如何找到 e 在 table 中的位置了 ?

我们知道只能通过数组下标(索引)操作数组,而数组的下标类型又是 int ,如果 e 是 int 类型,那好说,就直接用 e 来做数组下标(若 e > table.length,则可以 e % table.length 来获取下标),可 key - value 中的 key 类型不一定,所以我们需要一种统一的方式将 key 转换成 int ,最好是一个 key 对应一个唯一的 int (目前还不可能, int有范围限制,对转换方法要求也极高),所以引入了 hash 方法

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);  // 这里的处理,有兴趣的可以琢磨下;能够减少碰撞
}

实现 key 到 int 的转换(关于 hash,本文不展开讨论)。拿到了 key 对应的 int h 之后,我们最容易想到的对 value 的 put 和 get 操作也许如下

// put
table[h % table.length] = value;
// get
e = table[h % table.length];

直接取模是我们最容易想到的获取下标的方法,但是最高效的方法吗 ?

我们知道计算机中的四则运算最终都会转换成二进制的位运算

我们可以发现,只有 & 数是1时,& 运算的结果与被 & 数一致

1&1=1;
0&1=0;
1&0=0;
0&0=0;

这同样适用于多位操作数

1010&1111=1010;      => 10&15=10;
1011&1111=1011;      => 11&15=11;
01010&10000=00000;   => 10&16=0;
01011&10000=00000;   => 11&16=0;

我们是不是又有所发现:10 & 16 与 11 & 16 得到的结果一样,也就是冲突(碰撞)了,那么 10 和 11 对应的 value 会在同一个链表中,而 table 的有些位置则永远不会有元素,这就导致 table 的空间未得到充分利用,同时还降低了 put 和 get 的效率(对比数组和链表);由于是 2 个数进行 & 运算,所以结果由这两个数决定,如果我们把这两个数都做下限制,那得到的结果是不是可控制在我们想要的范围内了 ?

我们需要利用好 & 运算的特点,当右边的数的低位二进制是连续的 1 ,且左边是一个均匀的数(需要 hash 方法实现,尽量保证 key 的 h 唯一),那么得到的结果就比较完美了。低位二进制连续的 1,我们很容易想到 2^n - 1; 而关于左边均匀的数,则通过 hash 方法来实现,这里不做细究了。更多面试题,欢迎关注 公众号Java面试题精选

自此,2 的 n 次幂的相关问题就清楚了

table 的 length 为什么是 2 的 n 次幂

为了利用位运算 & 求 key 的下标

求索引的时候为什么是:h&(length-1),而不是 h&length,更不是 h%length

  • h%length 效率不如位运算快
  • h&length 会提高碰撞几率,导致 table 的空间得不到更充分的利用、降低 table 的操作效率

给各位留个疑问:为什么不直接用 2^n-1 作为 table.length ?欢迎评论区留言

问题 5:指定 initialCapacity

当我们指定了 initialCapacity,HashMap的构造方法有些许不同,如下所示 

调用 tableSizeFor 进行 threshold 的初始化

/**
 * Returns a power of two size for the given target capacity.
 * 返回 >= cap 最小的 2^n
 * cap = 10, 则返回 2^4 = 16;
 * cap = 5, 则返回 2^3 = 8;
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

虽然此处初始化的是 threshold,但后面初始化 table 的时候,会将其用于 table 的 length,同时会重置 threshold 为 table.length * loadFactor

自此,问题 5 也就清楚了

Map map = new HashMap(1000); 当我们存入多少个元素时会触发map的扩容

此时的 table.length = 2^10 = 1024; threshold = 1024 * 0.75 = 768; 所以存入第 769 个元素时进行扩容

Map map1 = new HashMap(10000); 我们存入第 10001个元素时会触发 map1 扩容吗

此时的 table.length = 2^14 = 16384; threshold = 16384 * 0.75 = 12288; 所以存入第 10001 个元素时不会进行扩容

问题6:加载因子

为什么加载因子的默认值是 0.75,并且不推荐我们修改

  • 如果loadFactor太小,那么map中的table需要不断的扩容,扩容是个耗时的过程
  • 如果loadFactor太大,那么map中table放满了也不不会扩容,导致冲突越来越多,解决冲突而起的链表越来越长,效率越来越低
  • 而 0.75 这是一个折中的值,是一个比较理想的值

总结

1、table.length = 2^n,是为了能利用位运算(&)来求 key 的下标,而 h&(length-1) 是为了充分利用 table 的空间,并减少 key 的碰撞

2、加载因子太小, table 需要不断的扩容,影响 put 效率;太大会导致碰撞越来越多,链表越来越长(转红黑树),影响效率;0.75 是一个比较理想的中间值

3、table.length = 2^n、hash 方法获取 key 的 h、加载因子 0.75、数组 + 链表(或红黑树),一环扣一环,保证了 key 在 table 中的均匀分配,充分利用了空间,也保证了操作效率,环环相扣的,而不是心血来潮的随意处理;缺了一环,其他的环就无意义了!

4、网上有个 put 方法的流程图画的挺好,我就偷懒了


相关文章
|
13天前
|
Java
Java之HashMap详解
本文介绍了Java中HashMap的源码实现(基于JDK 1.8)。HashMap是基于哈希表的Map接口实现,允许空值和空键,不同步且线程不安全。文章详细解析了HashMap的数据结构、主要方法(如初始化、put、get、resize等)的实现,以及树化和反树化的机制。此外,还对比了JDK 7和JDK 8中HashMap的主要差异,并提供了使用HashMap时的一些注意事项。
Java之HashMap详解
|
28天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
42 1
|
30天前
|
存储 安全 Java
Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
【10月更文挑战第17天】Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
57 2
|
15天前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
27天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
54 5
|
28天前
|
存储 Java API
详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
【10月更文挑战第19天】深入剖析Java Map:不仅是高效存储键值对的数据结构,更是展现设计艺术的典范。本文从基本概念、设计艺术和使用技巧三个方面,详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
48 3
|
28天前
|
存储 缓存 安全
在Java的Map家族中,HashMap和TreeMap各具特色
【10月更文挑战第19天】在Java的Map家族中,HashMap和TreeMap各具特色。HashMap基于哈希表实现,提供O(1)时间复杂度的高效操作,适合性能要求高的场景;TreeMap基于红黑树,提供O(log n)时间复杂度的有序操作,适合需要排序和范围查询的场景。两者在不同需求下各有优势,选择时需根据具体应用场景权衡。
30 2
|
28天前
|
存储 安全 Java
Java Map新玩法:深入探讨HashMap和TreeMap的高级特性
【10月更文挑战第19天】Java Map新玩法:深入探讨HashMap和TreeMap的高级特性,包括初始容量与加载因子的优化、高效的遍历方法、线程安全性处理以及TreeMap的自然排序、自定义排序、范围查询等功能,助你提升代码性能与灵活性。
24 2
|
1月前
|
Java
让星星⭐月亮告诉你,HashMap中保证红黑树根节点一定是对应链表头节点moveRootToFront()方法源码解读
当红黑树的根节点不是其对应链表的头节点时,通过调整指针的方式将其移动至链表头部。具体步骤包括:从链表中移除根节点,更新根节点及其前后节点的指针,确保根节点成为新的头节点,并保持链表结构的完整性。此过程在Java的`HashMap$TreeNode.moveRootToFront()`方法中实现,确保了高效的数据访问与管理。
30 2
|
1月前
|
Java 索引
让星星⭐月亮告诉你,HashMap之往红黑树添加元素-putTreeVal方法源码解读
本文详细解析了Java `HashMap` 中 `putTreeVal` 方法的源码,该方法用于在红黑树中添加元素。当数组索引位置已存在红黑树类型的元素时,会调用此方法。具体步骤包括:从根节点开始遍历红黑树,找到合适位置插入新元素,调整节点指针,保持红黑树平衡,并确保根节点是链表头节点。通过源码解析,帮助读者深入理解 `HashMap` 的内部实现机制。
34 2
下一篇
无影云桌面