”神仙修炼“之C的数据存储

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: char //字符型,所占存储空间为1字节int //基本整形,所占存储空间为4字节unsigned int //无符号整型,所占存储空间为4字节long (int) //长整型,所占存储空间为4/8字节unsigned long //无符号长整型,所占存储空间为4/8字节long long (int) //长长整型,所占存储空间为8字节short (int) //短整型,所占存储空间为2字节unsigned short //无符号短整型,所占存储空间为2字节。

 一、内功之数据在内存中的存储

本章内容重点: 1.数据类型的不同类型 2.整型在内存中的存储方式 3.大小端字节序存储 4.浮点数在内存中的存储方式

1.不同数据类型的介绍

我们先前已经了解到的基本类型(内置类型)如:

char    //字符型,所占存储空间为1字节
int     //基本整形,所占存储空间为4字节
unsigned int     //无符号整型,所占存储空间为4字节
long (int)       //长整型,所占存储空间为4/8字节
unsigned long    //无符号长整型,所占存储空间为4/8字节
long long (int)  //长长整型,所占存储空间为8字节
short (int)      //短整型,所占存储空间为2字节
unsigned short   //无符号短整型,所占存储空间为2字节
float            //单精度浮点型,所占存储空间为4字节
double           //双精度浮点型,所占存储空间为8字节
long double      //长双精度浮点型

image.gif

类型存在的意义:

1.使用不同数据类型为内存开辟不同的空间大小

2.不同数据所能表示的取值范围不同,可以参与的运算也不同

1.1🌜数据类型的分类🌛

    1. 整型家族👪
    char-----unsigned char signed char short----unsigned short signed short int-------unsigned int signed int long-----unsigned long signed long 为什么char也在整型家族呢?因为字符是以ASCII存储在内存中,ASCLII是整数,所以char属于整型合情合理👀(解决某些人的小疑问)。但是这里要注意❗:在我们编程过程中,char具体表示的是signed char还是unsigned char是要根据编译器决定的,常见的编译器认为char 是signed char。
      1. 浮点数家族👪
      float double
        1. 构造类型(自定义类型)👪
        数组类型(因为数组元素个数可以发生改变) 结构体类型struct 枚举类型enum 共用体(联合)类型union
          1. 指针类型👪
          int* pa char* pb float* pc void *pd
            1. 空类型👪
            void表示空类型(无类型) 通常用于函数的返回类型,函数的参数,指针类型。

            2.🌜整型在内存中的存储🌛

            由于一个变量在内存中存储需要开辟内存的存储单元,而不同的类型所开辟的空间大小有所不同,那么接下深刻理解一下整型 数据在内存中的存储👀

            首先,我们要提前具备以下知识点:

            有符号整数和无符号整数整数的原码、反码、补码

            2.1有符号整型和无符号整型(从二进制来看)

            有符号整数和无符号整数的区别在于如何理解整数最高位

              1. 对于无符号整数:整数的最高位被编译器理解为数据位。
                1. 对于有符号整数:整数的最高位被编译器理解为符号位。若最高位(符号位)为0则表示正数,若符号位为1则表示负数。
                  1. 可见对于相同字节数的整型数而言:由于有符号整数的数据位数比无符号整数的数据位数少1位,而这1位恰好是最高位,因此有符号整数表示的最大整数的绝对值只有无符号整数的一半
                  //举个栗子:我们可以查到char(signed char)和unsigned char的取值范围
                  //char占1个字节
                  char---> -128~127
                  unsigned char--->0~255

                  image.gif

                  image.gif编辑

                  在内存中的存储形式如上图

                  2.2整数的原码、反码和补码

                  计算机中整数的三种表示方法:原码、反码和补码。三种方法都存在符号位和数据位之分。

                  由于正数的原码反码补码相同,而负数的原码反码补码不同,规则如下:

                  原码:将二进制按照正负数直接翻译即可 反码:原码的符号位不变,其他位依次按位取反 补码:在反码的基础上+1得到补码 注意: 1.通过对补码按“符号位不变,其他位依次取反”后“+1”可得到原码。 2.同样,对补码先“-1”后,再“符号位不变,其他位依次取反”可得到原码。
                  //例如:
                  int a=20;
                  //20是正数,最高位是符号位0,整形占四个字节32个比特位
                  //正数的原码反码补码:0000 0000 0000 0000 0000 0000 0001 0100
                  //转换为十六进制:0x 00 00 00 16
                  int b=-10;
                  //-10是负数,最高位是符号位1
                  //原码:1000 0000 0000 0000 0000 0000 0000 1010
                  //反码:1111 1111 1111 1111 1111 1111 1111 0101
                  //补码:1111 1111 1111 1111 1111 1111 1111 0110
                  //转换为十六进制:0xff ff ff f6

                  image.gif

                  对于整型而言:在屏幕上显示的是该数的原码,在内存中存储的是该数的补码,这是为什么呢?😧

                  在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时, 加法和减法也可以统一处理CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
                  //举个栗子解释一下:当我们计算2-1的时候【相当于2+(-1)】
                  2
                  //由于正数的原码、反码、补码相同:
                  0000 0000 0000 0000 0000 0000 0000 0010
                  -1
                  //32位机器上-1的原码:由于是负数,最高位为符号位1
                  1000 0000 0000 0000 0000 0000 0000 0001
                  //-1的反码:原码符号位不变,其他位按位依次取反
                  1111 1111 1111 1111 1111 1111 1111 1110
                  //-1的补码:反码+1
                  1111 1111 1111 1111 1111 1111 1111 1111
                  2-1//相当于2+(-1):如果不使用补码,用原码计算
                  0000 0000 0000 0000 0000 0000 0000 0010
                  1000 0000 0000 0000 0000 0000 0000 0001
                  //
                  1000 0000 0000 0000 0000 0000 0000 0011
                  //得出结果:-3,可见2-1=-3是错误的
                  //当我们使用-1的补码计算的时候
                  0000 0000 0000 0000 0000 0000 0000 0010
                  1111 1111 1111 1111 1111 1111 1111 1111
                  //得出结果:1 0000 0000 0000 0000 0000 0000 0000 0000 0001
                  //由于只有32位,最前面的1舍掉得出:0000 0000 0000 0000 0000 0000 0000 0000 0001
                  //也就是1,2-1=1结果是正确的

                  image.gif

                  通过在计算机内存中负数用补码来表示,就可以将减法运算也转化为加法运算来处理。😁

                  2.3❗大小端字节序存储❗

                  在了解大小端存储之前,我们看一下在VS编译器中数据在内存中存储是什么样子的?

                  在VS编译器中:按住Ctrl+F10进行调试,打开软件上面调试选项,点击窗口下的内存即可打开

                  image.gif编辑

                  int a=20;
                  //20的原码、反码、补码都相同:
                  //0000 0000 0000 0000 0000 0000 0001 0100 
                  int b=-10;
                  //-10是负数
                  //原码:1000 0000 0000 0000 0000 0000 0000 1010
                  //反码:符号位不变,其他位依次按位取反
                  //反码:1111 1111 1111 1111 1111 1111 1111 0101
                  //补码:反码+1
                  //补码:1111 1111 1111 1111 1111 1111 1111 0110
                  在内存中是以十六进制显示的(二进制和十六进制的转换)
                  //20以十六进制显示:00 00 00 14
                  //-10以十六进制显示:ff ff ff f6 
                  //在内存中以补码形式存储数据

                  image.gif

                  为什么在内存中存储方式和图片显示不符合呢?接下来正式引入功法!💣

                  image.gif编辑

                  1.什么是大端小端?
                  大端字节序存储模式:数据的低位保存在内存的高地址处,数据的高位保存在内存的低地址处。小端字节序存储模式:数据的低位保存在内存的低地址处,数据的高位保存在内存的高地址处。
                  2.为什么有大端小端存储呢?
                  为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如 16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如 何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
                  3.解释图片中的问题
                  int a=20;
                  int b=-10;
                  //20以十六进制显示:00 00 00 14
                  //-10以十六进制显示:ff ff ff f6

                  image.gif

                  image.gif编辑

                  可见在VS的内存存储方式为小端字节序存储

                  4.面见笔试题
                  百度2015年系统工程师笔试题:请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。
                  //功能:设计一个小程序来判断当前机器的字节序。
                  //思路:判断大小端存储,假如数据int a=20,在内存中十六进制表示是00 00 00 16,
                  //设计程序判断第一个字节是00还是16,若是00表示是大端,反之为小端
                  //要点:根据不同类型指针实现对数据内存的访问多大的空间
                  int main()
                  {
                      int a = 20;
                      int result = *((char*)&a);
                      //char*指针表示对内存访问一个字节的空间
                      //解引用为对应一个字节的值
                      if (result)
                      {
                          printf("机器是小端存储");
                      }
                      else
                      {
                          printf("机器是大端存储");
                      }
                      return 0;
                  }
                  //函数实现:
                  int check()
                  {
                      int a = 20;
                      return (*(char*)&a);
                  }
                  int main()
                  {
                      int result =check();
                      //char*指针表示对内存访问一个字节的空间
                      //解引用为对应一个字节的值
                      if (result)
                      {
                          printf("机器是小端存储");
                      }
                      else
                      {
                          printf("机器是大端存储");
                      }
                      return 0;
                  }

                  image.gif


                  2.4🎓练习题🎓

                  1.第一题+解析😶
                  //输出什么?
                  #include <stdio.h>
                  int main()
                  {
                      char a= -1;
                      signed char b=-1;
                      unsigned char c=-1;
                      printf("a=%d,b=%d,c=%d",a,b,c);
                      return 0;
                  }

                  image.gif

                  //char取值范围是:0~255
                  //char a在内存中的二进制为:(负数)
                  //原码:1000 0000 0000 0000 0000 0000 0000 0001
                  //反码:1111 1111 1111 1111 1111 1111 1111 1110
                  //补码:1111 1111 1111 1111 1111 1111 1111 1111
                  //由于是char类型占一个字节,需要整型提升:取后八位
                  //1111 1111,整型提升原则:前面与补符号位相同的
                  //1111 1111 1111 1111 1111 1111 1111 1111为整型提升后的补码
                  //打印格式为%d有符号整型数据:
                  //原码:补码取反(符号位不变)+1
                  //1000 0000 0000 0000 0000 0000 0000 0001:-1
                  //signed char b=-1和char a=-1结果是一样的--->-1
                  unsigned char c=-1;
                  //参考上面可知且unsigned表示不区分符号位,统一按数值位看,全为正数
                  //原码:1000 0000 0000 0000 0000 0000 0000 0001
                  //反码:1111 1111 1111 1111 1111 1111 1111 1110
                  //补码:1111 1111 1111 1111 1111 1111 1111 1111
                  //由于是char类型占一个字节,需要整型提升:取后八位
                  //1111 1111,整型提升原则:由于是无符号,不区分负数,所以前面补0
                  //0000 0000 0000 0000 0000 0000 1111 1111:2^8-1=255

                  image.gif

                  最终结果:a=-1,b=-1,c=255

                  🌞补充一张“轮回转生”🌞

                  image.gif编辑

                  正确理解char的取值范围

                  2.第二题+解析😶
                  2.
                  #include <stdio.h>
                  int main()
                  {
                      char a = -128;
                      printf("%u\n",a);
                      return 0;
                  }

                  image.gif

                  char a=-128;//a是负数
                  //a的原码:1000 0000 0000 0000 0000 0000 1000 0000
                  //a的反码:1111 1111 1111 1111 1111 1111 0111 1111
                  //a的补码:1111 1111 1111 1111 1111 1111 1000 0000
                  //由于是char类型占一个字节,需要整型提升:取后八位
                  //1000 0000,整型提升原则:补符号位1
                  //1111 1111 1111 1111 1111 1111 1000 0000为整型提升后的结果
                  //打印格式为:无符号整型,最前面的符号位看作数据位
                  //1111 1111 1111 1111 1111 1111 1000 0000=4294967168

                  image.gif

                  最终结果:4294967168

                  3.第三题+解析😶
                  3.
                  #include <stdio.h>
                  int main()
                  {
                      char a = 128;
                      printf("%u\n",a);
                      return 0;
                  }

                  image.gif

                  //a是正数,原码反码补码相同
                  //a的原码:0000 0000 0000 0000 0000 0000 1000 0000
                  //a的补码:0000 0000 0000 0000 0000 0000 1000 0000
                  //由于是char类型占一个字节,需要整型提升:取后八位
                  //1000 0000,整型提升原则:补符号位1
                  //1111 1111 1111 1111 1111 1111  1000 0000为整型提升后的补码
                  //打印格式为:无符号整型,最前面的符号位看作数据位
                  //1111 1111 1111 1111 1111 1111  1000 0000=4,294,967,168

                  image.gif

                  4.第四题+解析😶
                  int main()
                  {
                      int i = -20;
                      unsigned int j = 10;
                      printf("%d\n", i + j);
                      //按照补码的形式进行运算,最后格式化成为有符号整数
                      return 0;
                  }

                  image.gif

                  //i为负数:符号位为1
                  //原码:1000 0000 0000 0000 0000 0000 0001 0100
                  //反码:1111 1111 1111 1111 1111 1111 1110 1011
                  //补码:1111 1111 1111 1111 1111 1111 1110 1100
                  //j为无符号整数
                  //原码=补码:0000 0000 0000 0000 0000 0000 0000 1010
                  //i+j
                  //1111 1111 1111 1111 1111 1111 1110 1100
                  //0000 0000 0000 0000 0000 0000 0000 1010
                  //补码结果:1111 1111 1111 1111 1111 1111 1111 0110
                  //原码:补码按位取反+1
                  //1000 0000 0000 0000 0000 0000 0000 1010=-10

                  image.gif

                  计算结果为:-10

                  5.第五题+解析😶
                  unsigned int i;
                      for(i = 9; i >= 0; i--)
                      {
                      printf("%u\n",i);
                      }

                  image.gif

                  由于int i是无符号整型,所以取值不可能小于(<)0.
                  所以程序中的i>=0判断条件,不论i--恒成立,输出结果会发生死循环

                  image.gif

                  6.第六题+解析😶
                  int main()
                  {
                      char a[1000];//字符型数组
                      int i;
                      for(i=0; i<1000; i++)
                      {
                          a[i] = -1-i;//分别对数组的每一个元素赋值
                          //-1 -2 ...-128 127 126 ...0 1...
                      }
                      printf("%d",strlen(a));
                      //strlen读取字符串长度,直到\0才停止,\0的ASCII值为0.也就是说strlen统计的是0之前有多少个元素
                      //从-1到-128到0一共有255个元素
                      return 0;
                  }

                  image.gif

                  因为char的取值范围在-128~127之间,对数组赋值到char数组中不可能超出这个范围
                  所以计算结果为:255

                  image.gif

                  7.第七题+解析😶
                  unsigned char i = 0;
                  int main()
                  {
                      for(i = 0;i<=255;i++)
                      {
                          printf("hello world\n");
                      }
                      return 0;
                  }

                  image.gif

                  同理,i<=255判断条件不论i++恒为真,程序会不断打印陷入死循环

                  image.gif

                  注意:特别关注题目中以及编程过程中遇到unsigned,可能会发生bug👾


                  3.🌜浮点型数据在内存中的存储🌛

                  常见的浮点数有哪些呢?

                  比如:3.14159261E10:E+数字表示10的数字次方浮点数家族:float double等等浮点数的范围:需要在float.h中查看--->使用evenrything 这个软件搜索limits.h和float.h可以查看在C语言中double和float的取值范围。

                  3.1抛砖引玉💡

                  我们先看下面这个例子

                  int main()
                  {
                      int n = 9;
                      float *pFloat = (float *)&n;
                      printf("n的值为:%d\n",n);
                      printf("*pFloat的值为:%f\n",*pFloat);
                      *pFloat = 9.0;
                      printf("num的值为:%d\n",n);
                      printf("*pFloat的值为:%f\n",*pFloat);
                      return 0;
                  }

                  image.gif

                  image.gif编辑

                  接下来解释一下输出的结果:

                  int n = 9;
                  //n的值为整型
                  float *pFloat = (float *)&n;
                  //取n的地址强制类型转换为浮点型指针类型,将取到的地址放到变量pFloat中,变量pFloat的类型是浮点型指针
                  printf("n的值为:%d\n",n);
                  //此时以整型打印整型n的值:结果为9
                  printf("*pFloat的值为:%f\n",*pFloat);
                  //对pFloat浮点型指针进行解引用操作,以浮点型打印整型n的结果:为0.0000000
                  *pFloat = 9.0;
                  //间接修改n的值为9.0浮点型
                  printf("num的值为:%d\n",n);
                  //以整型打印浮点数n的值:9.0000000
                   printf("*pFloat的值为:%f\n",*pFloat);
                  //对pFloat浮点型指针进行解引用操作,以浮点型打印整型n的结果:为9.000000

                  image.gif

                  也就是说:整型数据用整型输出,用浮点型输出结果会发生变化,说明在内存中浮点型数据和整形数据的存储方式不同。接下来详细介绍:

                  3.2浮点数的存储规则

                  根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式: 1. (-1)^S * M * 2^E 2. (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。 3. M表示有效数字,大于等于1,小于2。 4. 2^E表示指数位。
                  //举例说明
                  float num=5.0
                  //在内存中十进制转换为二进制存储的方式可以写成:
                  101.0
                  //又可以表示成:
                  1.010*2^2
                  //对应:(-1)^S * M * 2^E,可以表示为:
                  (-1)^0*1.010*2^2
                  //计算得出:
                  S=0;M=1.010;E=2

                  image.gif

                  IEEE 754规定:对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

                  image.gif编辑

                  在32位机器下,内存中的存储格式

                  对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

                  image.gif编辑

                  在64位机器下,内存中的存储格式

                  对于指数M的特别规定:

                  IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
                  //也就是说,上面的举例中:这样做可以提高保存在内存中的数据的精度
                  M=0.010

                  image.gif

                  对于指数E的特别规定:

                  首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以 IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。 指数E从内存中取出还可以再分成三种情况: E不全为0或不全为1这时,浮点数就采用下面的规则表示,即 指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。(因为之前M存储的是0.xxxxx,需要再把1补回来) 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进 制表示形式为: 0 01111110 00000000000000000000000 E全为0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值(指数级为负已经相当小了) 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。 E全为1 如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

                  3.3解释抛砖引玉的结果

                  //在32位平台下
                  int main()
                  {
                      int n = 9;
                      //n为正数,原码反码补码相同:0000 0000 0000 0000 0000 0000 0000 1001
                      float *pFloat = (float *)&n;
                      printf("n的值为:%d\n",n);
                      printf("*pFloat的值为:%f\n",*pFloat);
                      //将整数9按照浮点数存储规则进行会出现如下结果:
                      0 00000000 00000000000000000001001
                      S=0;E=00000000;M=00000000000000000001001//符合E全为0的情况
                      //也就是:(-1)^0*0*2^(-118)
                      打印结果为:0.000000
                      *pFloat = 9.0;
                      //此时n看作是浮点数
                      printf("num的值为:%d\n",n);
                      //以整型的方式打印浮点数:需要先将浮点数在内存中取出.我们先看9.0存入内存的方式
                      //9.0用二进制表示为:
                      1001.0
                      //进一步用浮点数表示为:
                      (-1)*0*1.001*2^3
                      //此时S=0,M=1.001,E=3
                      //存储在内存时:S=0,M=0.001,E=3+127=130
                      用二进制表示为:0 10000010 00100000000000000000000
                      //以整型方式显示:01000001000100000000000000000000
                      //通过二进制转十进制的方式得出:
                      1,091,567,616
                      printf("*pFloat的值为:%f\n",*pFloat);
                      //以浮点数形式打印浮点数9.0,结果为:
                      9.000000
                      return 0;
                  }

                  image.gif

                  注意:

                    1. 浮点数举例避免举小数点太复杂的例子,因为得出指数E+127很难用二进制表示,理解即可👌

                    2.解释了为什么我们在编程时有些数据用float和double 时输入数据相同,输出数据有稍微差异,因为在内存中存储时M占的位数有所不同,也就是说:浮点型数据存入内存和取出内存会有精度缺失的现象。

                    3.4浮点数的相关术语字典

                      1. 定点数:指的是小数点位置是固定的,小数点位于符号位和第一个数值位之间,它表示的是纯小数。
                        1. 浮点数:实数N可统一表示为:N=S*r^j,其中:S为尾数,规定用纯小数表示;j为阶码(正负均可,但必须为整数);r是基数,对二进制而言,r=2。例如:10.0111=10100111*2^10


                        目录
                        相关文章
                        |
                        3月前
                        |
                        存储 分布式计算 大数据
                        大数据处理竟然这么简单?学会这几招,你也能在数据洪流中游刃有余,秒变数据大师!
                        【8月更文挑战第6天】面对海量数据,有效处理成为关键。本文介绍大规模数据处理的核心挑战及解决方案,涵盖分布式存储(如HDFS)和计算(如Spark)。通过示例代码展示HDFS文件读写及Spark数据处理流程。此外,还强调了数据质量、安全及合理资源配置的重要性,助您在数据海洋中洞察先机。
                        71 1
                        |
                        6月前
                        |
                        存储 并行计算 算法
                        列式存储的另一面
                        列存是常见的数据存储技术,说到列存常常就意味着高性能,现代分析型数据库基本都会把列存作为标配, 列存的基本原理是减少硬盘的读取量。一个数据表有多个列,但运算可能只会用到其中少数几列,采用列存时,用不着的列就不必读出来了,而采用行式存储时,则要把所有列都扫描一遍。当取用列只占总列数的小部分时,列存的 IO 时间优势会非常大,就会显得计算速度快了很多。 不过,列存也有另一面,并不是在任何场景下都有优势。
                        |
                        存储 分布式数据库 数据库
                        海量数据超快查询的秘密-跳表思想 by彭文华
                        海量数据超快查询的秘密-跳表思想 by彭文华
                        |
                        SQL 存储 分布式数据库
                        如何同时兼顾多维分析和快速查询的需求?Kudu来帮忙!彭文华
                        如何同时兼顾多维分析和快速查询的需求?Kudu来帮忙!彭文华
                        |
                        存储 缓存 NoSQL
                        H2存储内核分析一
                        现在做数据库一般都才有 C/C++ 获取其它编译型的语言,为什么会选择 h2 这种基于 java 的语言?会不会影响效率?其实回答这个问题很简单,无论是用什么语言来实现数据库,其实都是在调用操作系统 IO 的函数。因此仅仅是作为存储的话差别其实是不大的。 现在大多数,涉及到存储内核的文章或者讲义,要么是一堆原理,要么就是玩具版本例子,根本无法应用到实际的工程上面去,就像马保国的闪电五连鞭一样。我们选择 h2 的一个重要原因就是,学习完后,可以直接应用到工程上。行不行直接在擂台上比一下就知道了。
                        H2存储内核分析一
                        |
                        存储 编译器
                        数据存储(跑路人学习笔记)
                        数据存储(跑路人学习笔记)
                        数据存储(跑路人学习笔记)
                        |
                        存储 数据中心 安全