[数据结构 -- 手撕排序算法第四篇] 堆排序,一篇带你搞懂堆排序

简介: [数据结构 -- 手撕排序算法第四篇] 堆排序,一篇带你搞懂堆排序

1、堆的应用 -- 堆排序

堆是一个完全二叉树,完全二叉树用数组存储数据最优。
堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1、建堆

升序:建大堆

降序:建小堆

2、利用堆删除的思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

1.1 堆排序的思路分析

我们本篇文章使用小堆进行讲解,小堆排序是降序。

对堆还不是很了解的同学可以浅看一下堆的那篇文章:戳这里即可跳转
1、我们先对数组里的元素进行向下调整建成小堆;


2、小堆的堆顶元素肯定是数组中最小的,因此我们将堆顶元素(数组首元素)与数组尾元素交换,将数组尾元素不在看作是数组中的元素(size--),再从堆顶开始向下调整重新构建小堆,不断重复就可以实现降序排序(升序只要将小堆改为大堆就可以实现)。

2、建堆

我们建堆可以使用向上调整建堆,也可以使用向下调整建堆,我们该如何选择呢?

那肯定是谁的时间复杂度小我就选谁,那接下来我们分析一下两种建堆的时间复杂度:

2.1 向上调整建堆:O(N*logN)

2.1.1 向上调整代码

void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[child] < a[parent])//这里控制大小堆
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}

2.1.2 向上调整建堆代码

//建堆 -- 向上调整,时间复杂度:O(N*log(N))
for (int i = 0; i < size; i++)
{
  AdjustUp(a, i);
}

我们画图来分析一下向上调整建堆时间复杂度:

堆是一个完全二叉树,满二叉树也是完全二叉树,因此我们以满二叉树为例推出向上调整建堆的时间复杂度为O(N*logN)。

2.2 向下调整建堆:O(N)

2.2.1 向下调整代码

void AdjustDown(HPDataType* a, int size, int parent)
{
  int child = parent * 2 + 1;
  while (child < size)//当child大于了数组大小就跳出循环
  {
    //找出左右孩子中小/大的那个(假设法)
    if (child + 1 < size && a[child + 1] < a[child])
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}

2.2.2 向下调整建堆代码

for (int i = (size - 1 - 1) / 2; i >= 0; i--)
{
    AdjustDown(a, size, i);
}

我们画图来分析一下向下调整建堆时间复杂度:

向下调整建堆时间复杂度:O(N)。

如此分析下来我们就可以知道,向下调正建堆才是最优选择。

3、堆排序实现代码

//堆排序时间复杂度O(N + N*logN)
void HeapSort(int* a, int size)
{
  //升序 -- 建大堆
  //降序 -- 建小堆
  //建堆 -- 向上调整,时间复杂度:O(N*log(N))
  //for (int i = 0; i < size; i++)
  //{
  //  AdjustUp(a, i);
  //}
  //建堆 -- 向下调整,时间复杂度:O(N)
  //倒着调整
  //叶子节点不需要处理
  //倒数第一个非叶子节点:最后一个节点的父亲开始调整
  for (int i = (size - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, size, i);
  }
  //O(N*log(N))
  int end = size - 1;
  while (end)
  {
    //1.先交换
    Swap(&a[0], &a[end]);
    //2.再调整,选出当前大小的数组中最小数
    AdjustDown(a, end, 0);
    end--;
  }
}

4、堆排序测试

我们建的是小堆,因此最终排的是降序。


*** 本篇结束 ***

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
65 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
152 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
109 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
23 2
|
21天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
55 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
125 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
69 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
76 1