接上一篇
Handler的sendMessage方法都做了什么
还记得文章开始时的两个问题吗?
- Handler明明是在子线程中发的消息怎么会跑到主线程中了呢?
- Handler的发送消息handleMessage又是怎么接收到的呢?
下面就分析一下Handler的sendMessage方法都做了什么,看代码
public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); } public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } /** * Enqueue a message into the message queue after all pending messages * before the absolute time (in milliseconds) <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * Time spent in deep sleep will add an additional delay to execution. * You will receive it in {@link #handleMessage}, in the thread attached * to this handler. * * @param uptimeMillis The absolute time at which the message should be * delivered, using the * {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
由上面的代码可以看出,Handler的sendMessage方法最后调用了sendMessageAtTime这个方法,其实,无论时sendMessage、sendEmptyMessage等方法最终都是调用sendMessageAtTime。可以看到sendMessageAtTime这个方法最后返回的是*enqueueMessage(queue, msg, uptimeMillis);*下面看下这个方法,代码如下
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
这里有一句代码非常重要,
msg.target = this;
这句代码就是将当前的Handler赋值给了Message中的target变量。这样,就将每个调用sendMessage方法的Handler与Message进行了绑定。
enqueueMessage方法最后返回的是**queue.enqueueMessage(msg, uptimeMillis);**也就是调用了MessageQueue中的enqueueMessage方法,下面看下MessageQueue中的enqueueMessage方法,代码如下
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
上面的代码就是将消息放进消息队列中,如果消息已成功放入消息队列,则返回true。失败时返回false,而失败的原因通常是因为处理消息队列正在退出。代码分析到这里可以得出以下两点结论了
- Handler在sendMessage时会将自己设置给Message的target变量即将自己与发送的消息绑定。
- Handler的sendMessage是将Message放入MessageQueue中。
到了这里已经知道Handler的sendMessage是将消息放进MessageQueue中,那么又是怎样从MessageQueue中拿到消息的呢?想要知道答案请继续阅读。
怎样从MessageQueue中获取Message
在文章的前面,贴出了ActivityThread类中的main方法的代码,不知道细心的你有没有注意到,在main方法的结尾处调用了一句代码
Looper.loop()
好了,现在可以看看*Looper.loop();*这句代码到底做了什么了loop方法中的代码如下
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ public static void loop() { final Looper me = myLooper();//通过myLooper方法拿到与主线程绑定的Looper if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue;//从Looper中得到MessageQueue // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); //开始死循环 for (;;) { //从消息队列中不断取出消息 Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); final long end; try { //这句代码是重点 msg.target.dispatchMessage(msg); end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (slowDispatchThresholdMs > 0) { final long time = end - start; if (time > slowDispatchThresholdMs) { Slog.w(TAG, "Dispatch took " + time + "ms on " + Thread.currentThread().getName() + ", h=" + msg.target + " cb=" + msg.callback + " msg=" + msg.what); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
上面的代码,我已经进行了部分注释,这里有一句代码非常重要
msg.target.dispatchMessage(msg);
执行到这句代码,说明已经从消息队列中拿到了消息,还记得msg.target吗?就是Message中的target变量呀!也就是发送消息的那个Handler,所以这句代码的本质就是调用了Handler中的dispatchMessage(msg)方法,代码分析到这里是不是有点小激动了呢!稳住!下面看下dispatchMessage(msg)这个方法,代码如下
/** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
现在来一句句的来分析上面的代码,先看下这句
if (msg.callback != null) { handleCallback(msg); }
msg.callback就是Runnable对象,当msg.callback不为null时会调用 handleCallback(msg)方法,先来看下 handleCallback(msg)方法,代码如下
private static void handleCallback(Message message) { message.callback.run(); }
上面的代码就是调用了Runnable的run方法。那什么情况下**if (msg.callback != null)**这个条件成立呢!还记得使用Handler的另一种方法吗?就是调用Handler的post方法呀!这里说明一下,使用Handler其实是有两种方法的
- 使用Handler的sendMessage方法,最后在handleMessage(Message msg)方法中来处理消息。
- 使用Handler的post方法,最后在Runnable的run方法中来处理,代码如下
public class MainActivity extends AppCompatActivity implements View.OnClickListener { private Button mTimeCycle,mStopCycle; private Runnable mRunnable; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); initView(); } private void initView() { mTimeCycle = findViewById(R.id.btn_time_cycle); mTimeCycle.setOnClickListener(this); mStopCycle = findViewById(R.id.btn_stop_cycle); mStopCycle.setOnClickListener(this); mRunnable = new Runnable() { @Override public void run() { Toast.makeText(MainActivity.this, "正在循环!!!", Toast.LENGTH_SHORT).show(); mHandler.postDelayed(mRunnable, 1000); } }; } @Override public void onClick(View v) { switch (v.getId()) { case R.id.btn_time_cycle: mHandler.post(mRunnable); break; case R.id.btn_stop_cycle: mHandler.removeCallbacks(mRunnable); break; } } }
第一种方法,我们已经分析了,下面来分析一下第二种使用方式的原理,先看下Handler的post的方法做了什么,代码如下
/** * Causes the Runnable r to be added to the message queue. * The runnable will be run on the thread to which this handler is * attached. * * @param r The Runnable that will be executed. * * @return Returns true if the Runnable was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); } private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }
由上面的代码不难看出,post方法最终也是将Runnable封装成消息,然后将消息放进MessageQueue中。下面继续分析dispatchMessage方法中的代码
else { //if中的代码其实是和if (msg.callback != null) {handleCallback(msg);} //原理差不多的,只不过mCallback是Handler中的成员变量。 if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } //当上面的条件都不成立时,就会调用这句代码 handleMessage(msg); }
上面的代码就不分析了,我已经在代码中进行了注释,下面再看下**handleMessage(msg)**这个方法,代码如下
/** * Subclasses must implement this to receive messages. */ public void handleMessage(Message msg) { }
其实,他就是一个空方法,具体的代码让我们自己重写这个方法进行处理。代码分析到这里,已经可以给出下面问题的答案了。
- Handler明明是在子线程中发的消息怎么会跑到主线程中了呢?
- Handler的发送消息handleMessage又是怎么接收到的呢?
在子线程中Handler在发送消息的时候已经把自己与当前的message进行了绑定,在通过Looper.loop()开启轮询message的时候,当获得message的时候会调用 与之绑定的Handler的**handleMessage(Message msg)**方法,由于Handler是在主线程创建的,所以自然就由子线程切换到了主线程。
总结
上面已经嗯将Handler的源码分析了一遍,现在来进行一些总结:
1、Handler的工作原理
在使用Handler之前必须要调用Looper.prepare()这句代码,这句代码的作用是将Looper与当前的线程进行绑定,在实例化Handler的时候,通过Looper.myLooper()获取Looper,然后再获得Looper中的MessageQueue。在子线程中调用Handler的sendMessage方法就是将Message放入MessageQueue中,然后调用Looper.loop()方法来从MessageQueue中取出Message,在取到Message的时候,执行 **msg.target.dispatchMessage(msg);**这句代码,这句代码就是从当前的Message中取出Handler然后执行Handler的handleMessage方法。
2、Handler、Message、MessageQueue以及Looper之间的关系
在介绍它们之间的关系之前,先说一下它们各自的作用。
- Handler:负责发送和处理消息。
- Message:用来携带需要的数据。
- MessageQueue:消息队列,队列里面的内容就是Message。
- Looper:消息轮巡器,负责不停的从MessageQueue中取Message。
它们的关系如下图(图片来源于网上)
3、在子线程中使用Handler
在子线程中使用Handler的方式如下
class LooperThread extends Thread { public Handler mHandler; public void run() { Looper.prepare(); mHandler = new Handler() { public void handleMessage(Message msg) { // process incoming messages here } }; Looper.loop(); } }
上面的代码来自官方的源码。
结束语
本文将Handler的机制详细讲解了一遍,包括在面试中有关Handler的一些问题,在文章中也能找到答案。顺便说下阅读代码应该注意的地方,在分析源码之前应该知道你分析代码的目的,就是你为了得到什么答案而分析代码;在分析代码时切记要避轻就重,不要想着要搞懂每句代码做了什么,要找准大方向。文中的代码已上传到GitHub,可以在这里获取,与Handler有关的源码在我上传的源码的handler包中。