因为m很小,所以我们可以针对0≤m≤3来对阿克曼函数进行推导对于阿克曼函数的具体推导过程如下:
当m=0时:
A(0,n)=n+1
当m=1时:
A(1,n)=A(0,A(1,n-1))=A(1,n-1)+1
=A(0,A(1,n-2))+1=A(1,n-2)+2
=A(0,A(1,n-3))+2=A(1,n-3)+3
......
=A(1,0)+n
=A(0,1)+n
=2+n
当m=2时:
A(2,n)=A(1,A(2,n-1))=A(2,n-1)+2
=A(1,A(2,n-2))+2=A(2,n-2)+2+2
=A(1,A(2,n-3))+2*2=A(2,n-3)+2+2+2
......
=A(2,0)+2*n
=A(1,1)+2*n
=3+2*n
当m=3时:
A(3,n)=A(2,A(3,n-1))=A(3,n-1)*2+3
=A(2,A(3,n-2))*2+3=(A(3,n-2)*2+3)*2+3
=A(2,A(3,n-3))*2*2+3*2+3=(A(3,n-3)*2+3)*2*2+3*2+3
=A(3,n-3)*2*2*2+3*2*2+3*2+3
......
=A(3,0)*2^n+3(2^n-1)
=A(2,1)*2^n+3(2^n-1)
=(3+2*n)*2^n+3(2^n-1)
=2^(n+3)-3