m基于16QAM软解调和LDPC信道编译码的通信链路误码率仿真

简介: m基于16QAM软解调和LDPC信道编译码的通信链路误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

4305ee6ae54195536f68a63932293108_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于16QAM软解调和LDPC信道编译码的通信链路包括以下主要步骤:

2.1 数据源编码
在数据源编码阶段,输入的二进制数据会被编码为纠错码,以提高数据传输的可靠性。常用的纠错码包括卷积码、LDPC码等。本文将采用LDPC码作为纠错码。

2.2 调制
在调制阶段,编码后的数据将被调制为模拟信号,以便于在传输媒介中传输。常用的调制方式包括PSK、QAM、FSK等。本文将采用16QAM调制方式。

2.3 信道传输
在信道传输阶段,调制后的信号将被传输到接收端。在传输过程中,信号会受到噪声、多径衰落等影响,从而导致信号失真。因此,需要在接收端进行信号处理,以恢复原始信号。本文将采用软解调方式。

2.4 解调
在解调阶段,接收端将对接收到的信号进行解调,以恢复原始信号。常用的解调方式包括硬解调和软解调。本文将采用软解调方式。

2.5 解码
在解码阶段,接收端将对解调后的信号进行解码,以恢复原始数据。解码过程中,需要采用与编码阶段相同的纠错码。本文将采用LDPC码作为纠错码。

624bd4290c227b0cd4e207e75cae5470_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c1d946d8fd5dda971c4eef6824f64329_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

for ij = 1:length(SNRs)  

    errs = 0;             
    sigma      = sqrt(1./(2*10^(SNRs(ij)/10)*R));  
    for frame = 1:N_Frame
        if mod(frame,1000)==1
           [ij,frame]
        end
        %产生信号
        Tdats0              = randi([0,1],1,N_bits);
        Tdats               = mod(Tdats0*G,2);  

        %调制
        Tmods               = modulates(Tdats,K);           
        %经过信道
        Rmods               = awgn(Tmods,SNRs(ij),'measured'); 
        %解调
        Rdats               = soft_demodulates(Rmods,K);
        Rbits               = zeros(size(Rdats));
        idx                 = find(Rdats>=0);
        Rbits(idx)          = 1;
        z_hat               = func_Dec(2*Rbits-1,sigma,H,max_iter);
        x_hat               = round(z_hat(size(G,2)+1-size(G,1):size(G,2)));
        Err1                = sum(Tdats0~=x_hat');
        errs                = errs + Err1;
    end
    ber(ij) = errs/(N_bits*N_Frame);
end 

figure;
semilogy(SNRs, ber ,'b-o')
grid on; 
xlabel('SNR(dB)');
ylabel('BER');
if max_iter==15
   save R21.mat SNRs ber
end
if max_iter==30
   save R22.mat SNRs ber
end
相关文章
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
200 1
|
算法 5G 调度
5G 多址接入|带你读《5G空口特性与关键技术》之五
采用正交多址方式,用户间相互不存在干扰。采用非正交多址方式,每个用户的信号有可能与其他用户的信号相互叠加干扰,但是这种干扰通常在接收时可以采用信号处理的方式去除,以还原某个特定用户的信号。
15177 2
5G 多址接入|带你读《5G空口特性与关键技术》之五
|
存储 编解码 算法
准循环 LDPC 码(QC-LDPC) | 带你读《5G-NR信道编码》之九
本节将为你介绍准循环 LDPC 码(QC-LDPC)的基本内容。
13418 2
准循环 LDPC 码(QC-LDPC) | 带你读《5G-NR信道编码》之九
|
9月前
|
人工智能 运维 监控
超越传统网络防护,下一代防火墙安全策略解读
超越传统网络防护,下一代防火墙安全策略解读
239 6
|
存储 网络安全 开发工具
Git 中文参考(一)(7)
Git 中文参考(一)
129 2
|
移动开发 小程序 JavaScript
uView Image 图片
uView Image 图片
347 2
|
Windows
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
991 4
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
|
算法 异构计算 Python
m基于FPGA的217卷积编码维特比译码verilog实现,包含testbench不使用IP核
该内容展示了使用Vivado 2019.2进行卷积编码和维特比译码的模拟。提供了编码、译码输出和RTL图的图片,以及Verilog实现的核心代码。卷积编码是一种前向纠错技术,基于生成多项式产生冗余数据;维特比译码利用动态规划恢复原始信息,最小化错误。Verilog程序包含了编码和译码模块,以及输入输出信号的时序操作。
240 0
|
关系型数据库 数据处理 PostgreSQL
在 Postgres 中使用 Split Part
【8月更文挑战第11天】
716 0
在 Postgres 中使用 Split Part
|
存储 算法
m基于LDPC编译码的matlab误码率仿真,对比SP,MS,NMS以及OMS四种译码算法
MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。
453 3