获取携程网站上指定景点的用户评论数据

简介: 获取携程网站上指定景点的用户评论数据

古人说:成功的关键在于坚持不懈,所以小编晚上跟着B站一起学习了,并写出了这篇文章,学习在于努力

本文获取的是携程旅游网站中不同景点的评论数据,

1.导入相应的模块

import requests
import json
import csv

2.定义postUrl变量为携程网站评论数据请求的URL。接着定义urls列表,包含不同景点的poiId和名称

postUrl = "https://m.ctrip.com/restapi/soa2/13444/json/getCommentCollapseList"
# 将景点poiId和名称添加到此处
urls = [
    ['76865', '星海广场'],
    ['75628', '棒棰岛'],
    ['75633', '大连森林动物园'],
    ['60514877', '三寰牧场'],
    ['75635', '劳动公园'],
    ['23035466', '东港音乐喷泉广场'],
    ['79494', '海之韵广场'],
    ['87618', '金石滩度假区'],
    ['87748', '滨海路'],
    ['87647', '滨海国家地质公园'],
    ['24845945', '莲花山观景台'],
    ['92196', '白玉山景区'],
    ['13301914', '大连天门山国家森林公园'],
]

3.遍历urls列表,对于每个景点,首先定义data_pre变量,包含评论数据请求的参数,其中poiId为当前景点的poiId

for id in urls:
    print("正在爬取景点:", id[1])
    # 通过返回值判断总评论数,每页9条,计算出总页数,对大于2000条的数据只爬取两千条
    data_pre = {
        "arg": {
            "channelType": 2,
            "collapseType": 0,
            "commentTagId": 0,
            "pageIndex": 1,
            "pageSize": 10,
            "poiId": id[0],
            "sourceType": 1,
            "sortType": 3,
            "starType": 0
        },
        "head": {
            "cid": "09031069112760102754",
            "ctok": "",
            "cver": "1.0",
            "lang": "01",
            "sid": "8888",
            "syscode": "09",
            "auth": "",
            "xsid": "",
            "extension": []
        }
    }

4.发送post请求获取该景点评论的总页数,将返回的数据解析为json格式,从中获取评论总数,计算出总页数total_page。如果总页数大于300,则将total_page设置为300。接着遍历1到total_page,对于每一页,定义data变量,包含评论数据请求的参数,其中pageIndex为当前页数。

 html = requests.post(postUrl, data=json.dumps(data_pre)).text
    html = json.loads(html)
    # 确定总页数总页数
    total_page = int(html['result']['totalCount'] / 10)
    if total_page > 300:
        total_page = 300
    # 遍历查询评论
    print("总页数:", total_page, "爬取中")

5.发送post请求获取评论数据,将返回的数据解析为json格式,从中获取每条评论的内容result,并将其保存到csv文件中。最后输出该景点的名称和爬取完成的提示信息。

 # 创建写入csv文件
    path = '景点数据.csv'
    xuhao = 0
    with open(path, 'w', newline='', encoding='utf-8') as f:
        file = csv.writer(f)
        file.writerow(['序号', '景区ID', '景区名称', '评论'])
        for page in range(1, int(total_page) + 1):
            data = {
                "arg": {
                    "channelType": 2,
                    "collapseType": 0,
                    "commentTagId": 0,
                    "pageIndex": page,
                    "pageSize": 10,
                    "poiId": id[0],
                    "sourceType": 1,
                    "sortType": 3,
                    "starType": 0
                },
                "head": {
                    "cid": "09031069112760102754",
                    "ctok": "",
                    "cver": "1.0",
                    "lang": "01",
                    "sid": "8888",
                    "syscode": "09",
                    "auth": "",
                    "xsid": "",
                    "extension": []
                }
            }
            html = requests.post(postUrl, data=json.dumps(data)).text
            html = json.loads(html)
            # 获取评论
            for j in range(10):
                result = html['result']['items'][j]['content']
                file.writerow([xuhao, id[0], id[1], result])
                print([xuhao, id[0], id[1], result])
                xuhao += 1
    print(id[1], "爬取完成")

常用的获取数据工具包括Scrapy、BeautifulSoup、Selenium等。Scrapy是一个Python编写的开源网络爬虫框架,可以快速高效地进行数据爬取,支持多线程、分布式爬取等功能。BeautifulSoup是一个Python库,可以快速解析HTML和XML文档,提取需要的信息。Selenium是一个自动化测试工具,可以模拟人类操作浏览器,对于一些需要登录或滑动验证码的网站爬取非常有用。

除了工具,还有一些常用的技巧可以提高数据爬取的效率。例如,设置合适的请求头可以避免被网站反爬虫机制拦截;使用代理IP可以避免频繁访问同一网站被封禁IP;使用多线程或异步IO可以提高爬取速度等等。同时,还需要注意遵守网站的robots协议和法律法规,不进行恶意爬取和侵犯隐私等行为。

相关文章
|
4月前
|
搜索推荐 API 定位技术
解锁携程美食与景点数据接口:打造个性化旅行体验的秘密武器
携程API助您探索旅游信息,虽无专门“美食列表”接口,但可通过景点详情接口获取周边美食推荐。结合地图或餐饮API,丰富美食数据一手掌握。景点列表接口帮助搜索景点详情,包括名称、位置等。使用流程包括注册账号、获取密钥、构造请求及解析响应数据。记得查阅最新文档,确保合规使用。体验API:[链接]。
|
7月前
|
自然语言处理 搜索推荐 数据挖掘
自制字节上万条招聘信息搜索网站,好玩!
自制字节上万条招聘信息搜索网站,好玩!
|
数据采集 存储 数据可视化
获取网站上的旅游攻略信息,并作数据可视化
获取网站上的旅游攻略信息,并作数据可视化
229 1
好客租房175-获取当前小区被点击房源数据
好客租房175-获取当前小区被点击房源数据
113 0
好客租房175-获取当前小区被点击房源数据
好客租房176-获取房源数据优化
好客租房176-获取房源数据优化
137 0
好客租房176-获取房源数据优化
|
资源调度 数据处理
好客租房115-获取数据
好客租房115-获取数据
142 0
|
新零售 监控 安全
华住酒店用户数据疑被泄露,企业数据自保攻略有二
近日,网曝疑似华住集团旗下连锁酒店用户数据在暗网售卖。从卖家发布内容看,数据包含华住旗下汉庭、美爵、禧玥、漫心、诺富特、美居、CitiGo、桔子、全季、星程、宜必思、怡莱、海友等酒店。泄露的信息包括华住官网注册资料、酒店入住登记的身份信息及酒店开房记录,住客姓名、手机号、邮箱、身份证号、登录账号密码等。
2593 0
|
新零售 大数据 搜索推荐
8月17日科技联播:搜索热度赶超214情人节,七夕成中国情侣“撒狗粮”官方指定时间
行行好,给单身狗一条活路呗,七夕已经当仁不让地成为“过浪漫”、“撒狗粮”官方指定时间,红芯浏览器微信致歉不应强调国产自主,这样的道歉你接受吗?“靠脸吃饭”的时代真的来了,支付宝宣布刷脸支付已经具备商业化的能力!.....在.“七夕效应”的影响下,今天的科技圈比较平静,可能大家都去撒狗粮了!
2167 0