go-micro集成链路跟踪的方法和中间件原理2

简介: go-micro集成链路跟踪的方法和中间件原理2

客户端Wrap


在客户端中远程调用的定义在Client中,它是一个接口,定义了若干方法:

type Client interface {
  ...
  Call(ctx context.Context, req Request, rsp interface{}, opts ...CallOption) error
  ...
}

我们这里为了讲解方便,只关注Call方法,其它的先省略。

下面来看一下Client是怎么被Wrap的。


XXXWrapper


要想Wrap一个Client,需要通过struct嵌套这个Client,并实现Client接口的方法。至于这个struct的名字无法强制要求,一般以XXXWrapper命名。

这里以链路跟踪使用的 otWrapper 为例,它的定义如下:

type otWrapper struct {
  ot opentracing.Tracer
  client.Client
}
func (o *otWrapper) Call(ctx context.Context, req client.Request, rsp interface{}, opts ...client.CallOption) error {
  ...
  if err = o.Client.Call(ctx, req, rsp, opts...); err != nil {
  ...
}
...

注意XXXWrapper实现的接口方法中都去调用了被嵌套Client的对应接口方法,这是能够嵌套执行的关键。


Wrap Client


有了上面的 XXXWrapper,还需要把它注入到程序的执行流程中。

go-micro在NewService的时候通过调用 micro.WrapClient 设置这些 XXXWrapper:

service := micro.NewService(
    ...
    micro.WrapClient(tracerClient),
  )

和WrapHandler差不多,WrapClient的参数不是直接传入XXXWrapper的实例,而是一个func,定义如下:

type Wrapper func(Client) Client

这个func需要将传入的的Client包装到 XXXWrapper 中,并返回 XXXWrapper 的实例。这里传入的 tracerClient 就是这样一个func:

return func(c client.Client) client.Client {
  if ot == nil {
    ot = opentracing.GlobalTracer()
  }
  return &otWrapper{ot, c}
}

要实现Client的嵌套,可以给定一个初始的Client实例作为第一个此类func的输入,然后前一个func的输出作为后一个func的输入,依次执行,最终形成业务代码中要使用的Client实例,这很像俄罗斯套娃,它有很多层Client。

那么这个俄罗斯套娃是什么时候创建的呢?

在 micro.NewService -> newService -> newOptions中:

func newOptions(opts ...Option) Options {
  opt := Options{
    ...
    Client:    client.DefaultClient,
    ...
  }
  for _, o := range opts {
    o(&opt)
  }
  return opt
}

可以看到这里给Client设置了一个初始值,然后遍历这些NewService时传入的Option(WrapClient返回的也是Option),这些Option其实都是func,所以就是遍历执行这些func,执行这些func的时候会传入一些初始默认值,包括Client的初始值。

那么前一个func的输出怎么作为后一个func的输入的呢?再来看下WrapClient的源码:

func WrapClient(w ...client.Wrapper) Option {
  return func(o *Options) {
    for i := len(w); i > 0; i-- {
      o.Client = w[i-1](o.Client)
    }
  }
}

可以看到Wrap方法从Options中获取到当前的Client实例,把它传给Wrap func,然后新生成的实例又被设置到Options的Client字段中。

正是这样形成了前文所说的俄罗斯套娃。

再来看一下客户端调用的执行流程是什么样的?

通过service的Client()方法获取到Client实例,然后通过这个实例的Call()方法执行RPC调用。

client:=service.Client()
client.Call()

这个Client实例就是前文描述的套娃实例:

func (s *service) Client() client.Client {
  return s.opts.Client
}

前文提到过:XXXWrapper实现的接口方法中调用了被嵌套Client的对应接口方法。这就是能够嵌套执行的关键。

这里给一张图,让大家方便理解Wrap Client进行RPC调用的执行流程:1689145618099.png


客户端Wrap和服务端Wrap的区别


一个重要的区别是:对于多次WrapClient,后添加的先被调用;对于多次WrapHandler,先添加的先被调用。

有一个比较怪异的地方是,WrapClient时如果传递了多个Wrapper实例,WrapClient会把顺序调整过来,这多个实例中前边的先被调用,这个处理和多次WrapClient处理的顺序相反,不是很理解。

func WrapClient(w ...client.Wrapper) Option {
  return func(o *Options) {
    // apply in reverse
    for i := len(w); i > 0; i-- {
      o.Client = w[i-1](o.Client)
    }
  }
}

客户端Wrap还提供了更低层级的CallWrapper,它的执行顺序和服务端HandlerWrapper的执行顺序一致,都是先添加的先被调用。

  // wrap the call in reverse
  for i := len(callOpts.CallWrappers); i > 0; i-- {
    rcall = callOpts.CallWrappers[i-1](rcall)
  }

还有一个比较大的区别是,服务端的Wrap是调用某个业务Handler之前临时加上的,客户端的Wrap则是在调用Client.Call时就已经创建好。这样做的原因是什么呢?这个可能是因为在服务端,业务Handler和HandlerWrapper是分别注册的,注册业务Handler时HandlerWrapper可能还不存在,只好采用动态Wrap的方式。而在客户端,通过Client.Call发起调用时,Client是发起调用的主体,用户有很多获取Client的方式,无法要求用户在每次调用前都临时Wrap。


Http服务的链路跟踪


关于Http或者说是Restful服务的链路跟踪,go-micro的httpClient支持CallWrapper,可以用WrapCall来添加链路跟踪的CallWrapper;但是其httpServer实现的比较简单,把http内部的Handler处理完全交出去了,不能用WrapHandler,只能自己在http的框架中来做这件事,比如go-micro+gin开发的Restful服务可以使用gin的中间件机制来做链路追踪。


以上就是本文的主要内容,如有错漏欢迎指正。

代码已经上传到Github,欢迎访问:github.com/bosima/go-d…


相关文章
|
6月前
|
数据采集 运维 DataWorks
DataWorks 千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
智能驾驶数据预处理面临数据孤岛、任务爆炸与开发运维一体化三大挑战。DataWorks提供一站式的解决方案,支持千万级任务调度、多源数据集成及全链路数据开发,助力智能驾驶模型数据处理与模型训练高效落地。
|
3月前
|
存储 安全 Java
【Golang】(4)Go里面的指针如何?函数与方法怎么不一样?带你了解Go不同于其他高级语言的语法
结构体可以存储一组不同类型的数据,是一种符合类型。Go抛弃了类与继承,同时也抛弃了构造方法,刻意弱化了面向对象的功能,Go并非是一个传统OOP的语言,但是Go依旧有着OOP的影子,通过结构体和方法也可以模拟出一个类。
236 1
|
6月前
|
人工智能 安全 Java
Go与Java泛型原理简介
本文介绍了Go与Java泛型的实现原理。Go通过单态化为不同类型生成函数副本,提升运行效率;而Java则采用类型擦除,将泛型转为Object类型处理,保持兼容性但牺牲部分类型安全。两种机制各有优劣,适用于不同场景。
210 24
|
5月前
|
缓存 监控 中间件
Django中间件自定义开发指南:从原理到实战的深度解析
Django中间件是Web应用的“交通警察”,在请求与响应过程中进行全局处理,适用于身份验证、日志记录、性能监控等功能。本文详解中间件的工作原理、开发步骤及实战案例,帮助开发者掌握自定义中间件的构建方法,提升Django应用的可维护性与扩展性。
299 0
|
6月前
|
存储 人工智能 安全
深入理解 go sync.Map - 基本原理
本文介绍了 Go 语言中 `map` 在并发使用时的常见问题及其解决方案,重点对比了 `sync.Mutex`、`sync.RWMutex` 和 `sync.Map` 的性能差异及适用场景。文章指出,普通 `map` 不支持并发读写,容易引发错误;而 `sync.Map` 通过原子操作和优化设计,在某些场景下能显著提升性能。同时详细讲解了 `sync.Map` 的基本用法及其适合的应用环境,如读多写少或不同 goroutine 操作不同键的场景。
259 1
|
8月前
|
Go C++
Go语言方法与接收者 -《Go语言实战指南》
本文介绍了 Go 语言中方法的相关概念和用法。方法是绑定到特定类型上的函数,包含值接收者和指针接收者两种形式。值接收者不会改变原始数据,而指针接收者可修改原始数据,且在处理大型结构体时性能更优。文章详细对比了方法与普通函数的区别,并说明了选择指针接收者的原因,如修改原始值、提升性能及保持一致性。此外,Go 支持为任意自定义类型定义方法,不仅限于结构体。最后通过表格总结了方法的核心概念和使用场景。
225 34
|
7月前
|
开发框架 JSON 中间件
Go语言Web开发框架实践:路由、中间件、参数校验
Gin框架以其极简风格、强大路由管理、灵活中间件机制及参数绑定校验系统著称。本文详解其核心功能:1) 路由管理,支持分组与路径参数;2) 中间件机制,实现全局与局部控制;3) 参数绑定,涵盖多种来源;4) 结构体绑定与字段校验,确保数据合法性;5) 自定义校验器扩展功能;6) 统一错误处理提升用户体验。Gin以清晰模块化、流程可控及自动化校验等优势,成为开发者的优选工具。
|
7月前
|
算法 Java Go
Go内存原理-GC原理
本文介绍了Go语言中垃圾回收(GC)机制的发展与实现原理,涵盖从标记-清除算法到三色标记法,再到三色标记加混合写屏障的演进过程,重点解析各版本GC的核心思想、优缺点及性能优化方向。
179 4
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
783 3
|
8月前
|
安全 Go 开发者
Go语言之切片的原理与用法 - 《Go语言实战指南》
切片(slice)是Go语言中用于处理变长数据集合的核心结构,基于数组的轻量级抽象,具有灵活高效的特点。切片本质是一个三元组:指向底层数组的指针、长度(len)和容量(cap)。本文详细介绍了切片的声明与初始化方式、基本操作(如访问、修改、遍历)、长度与容量的区别、自动扩容机制、共享与副本处理、引用类型特性以及常见陷阱。通过理解切片的底层原理,开发者可以更高效地使用这一数据结构,优化代码性能。
241 13