一个基于Go程序的持续集成/持续部署(CI/CD)

简介: 本教程通过一个简单的Go程序示例,展示了如何使用GitHub Actions实现从代码提交到Kubernetes部署的CI/CD流程。首先创建并版本控制Go项目,接着编写Dockerfile构建镜像,再配置CI/CD流程自动化构建、推送Docker镜像及部署应用。此流程基于GitHub仓库,适用于快速迭代开发。

编写Go程序
确保你的Go项目在GitHub(或其他Git服务)上有版本控制。以下是一个简单的hello.go示例:
go复制代码
package main

import (

 "fmt"  

 "net/http"  

)

func handler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "Hello, Kubernetes!")  

}

func main() {

 http.HandleFunc("/", handler)  

 fmt.Println("Server is listening on 8080")  

 if err := http.ListenAndServe(":8080", nil); err != nil {  

     panic(err)  

 }  

}
步骤三:Dockerfile编写
在项目根目录下创建Dockerfile,用于构建镜像:
Dockerfile复制代码

使用官方Go运行时作为父镜像

FROM golang:1.16

设置工作目录

WORKDIR /app

将当前目录内容复制到位于/app中的容器中

COPY . .

构建Go应用

RUN go build -o hello-app

指定容器运行时执行的命令

CMD ["./hello-app"]

暴露端口

EXPOSE 8080
步骤四:使用CI/CD工具(以GitHub Actions为例)
在GitHub仓库中创建.github/workflows/ci-cd.yml文件,配置CI/CD流程:
yaml复制代码
name: CI/CD

on:

push:

 branches: [ main ]  

jobs:

build:

 runs-on: ubuntu-latest  

 steps:  

   - uses: actions/checkout@v2  



   - name: Set up Docker Buildx  

     uses: docker/setup-buildx-action@v1  



   - name: Login to DockerHub  

     uses: docker/login-action@v1  

     with:  

       username: ${
  { secrets.DOCKER_USERNAME }}  

       password: ${
  { secrets.DOCKER_PASSWORD }}  



   - name: Build and push  

     id: docker_build  

     uses: docker/build-push-action@v2  

     with:  

       push: true  

       tags: yourusername/hello-app:latest  



   - name: Deploy to Kubernetes cluster  

     uses: azure/k8s-deploy@v1  

     with:  

       namespace: default  

       manifests: |  

         deployment.yaml  

        image-pull-secrets: |  

         name: regcred  

        kubectl-version: latest

注意:你需要配置secrets.DOCKER_USERNAME和secrets.DOCKER_PASSWORD在GitHub仓库设置中。
步骤五:编写Kubernetes部署文件
在项目根目录下创建deployment.yaml:
yaml复制代码
//代码效果参考:http://www.mwgw.cn/sitemap.xml
//代码效果参考:https://www.h3cw.com/sitemap.xml
//代码效果参考:https://www.weibow.com/sitemap.xml
//代码效果参考:https://www.vipwb.com/sitemap.xml
//代码效果参考:https://www.uagu.cn/sitemap.xml
apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-app

spec:

replicas: 1

selector:

 matchLabels:  

   app: hello-app  

template:

 metadata:  

   labels:  

     app: hello-app  

 spec:  

   containers:  

   - name: hello-app  

     image: yourusername/hello-app:latest  

     ports:  

     - containerPort: 8080

步骤六:运行流水线
每次将代码推送到main分支时,GitHub Actions将自动触发CI/CD流程,包括构建Docker镜像、推送镜像到Docker Hub,并在Kubernetes集群中部署应用。
这只是一个基础的示例,根据你的具体需求,你可能需要调整Dockerfile、Kubernetes配置文件或CI/CD流程。
效果:

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
5月前
|
弹性计算 机器人 应用服务中间件
一键部署开源Qwen3并集成到钉钉、企业微信
Qwen3系列模型现已正式发布并开源,包含8款“混合推理模型”,其中涵盖两款MoE模型(Qwen3-235B-A22B与Qwen3-30B-A3B)及六个Dense模型。阿里云计算巢已支持Qwen3-235B-A22B和Qwen3-32B的私有化部署,用户可通过计算巢轻松完成部署,并借助AppFlow集成至钉钉机器人或企业微信。文档详细介绍了从模型部署、创建应用到配置机器人的全流程,帮助用户快速实现智能助手的接入与使用。
414 19
一键部署开源Qwen3并集成到钉钉、企业微信
|
3月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
403 0
|
4月前
|
JSON 缓存 并行计算
NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
阿里巴巴近期开源了通义千问Qwen3大语言模型(LLM),包含两款混合专家模型(MoE)235B-A22B与30B-A3B,以及六款稠密模型(Dense)从0.6B到32B不等。开发者可基于NVIDIA GPU使用TensorRT-LLM、Ollama、SGLang、vLLM等框架高效部署Qwen3系列模型,实现快速词元生成和生产级应用开发。
|
4月前
|
Kubernetes Linux Go
使用 Uber automaxprocs 正确设置 Go 程序线程数
`automaxprocs` 包就是专门用来解决此问题的,并且用法非常简单,只需要使用匿名导入的方式 `import _ "go.uber.org/automaxprocs"` 一行代码即可搞定。
243 78
|
2月前
|
Cloud Native 中间件 调度
云原生信息提取系统:容器化流程与CI/CD集成实践
本文介绍如何通过工程化手段解决数据提取任务中的稳定性与部署难题。结合 Scrapy、Docker、代理中间件与 CI/CD 工具,构建可自动运行、持续迭代的云原生信息提取系统,实现结构化数据采集与标准化交付。
101 1
云原生信息提取系统:容器化流程与CI/CD集成实践
|
7月前
|
人工智能 Kubernetes jenkins
容器化AI模型的持续集成与持续交付(CI/CD):自动化模型更新与部署
在前几篇文章中,我们探讨了容器化AI模型的部署、监控、弹性伸缩及安全防护。为加速模型迭代以适应新数据和业务需求,需实现容器化AI模型的持续集成与持续交付(CI/CD)。CI/CD通过自动化构建、测试和部署流程,提高模型更新速度和质量,降低部署风险,增强团队协作。使用Jenkins和Kubernetes可构建高效CI/CD流水线,自动化模型开发和部署,确保环境一致性并提升整体效率。
|
2月前
|
物联网 Linux 开发者
快速部署自己私有MQTT-Broker-下载安装到运行不到一分钟,快速简单且易于集成到自己项目中
本文给物联网开发的朋友推荐的是GMQT,让物联网开发者快速拥有合适自己的MQTT-Broker,本文从下载程序到安装部署手把手教大家安装用上私有化MQTT服务器。
834 5
|
4月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
317 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
7月前
|
弹性计算 人工智能 应用服务中间件
一键部署开源DeepSeek并集成到企业微信
DeepSeek近期发布了两款先进AI模型V3和R1,分别适用于通用应用和推理任务。由于官方API流量过大,建议通过阿里云的计算巢进行私有化部署,以确保稳定使用。用户无需编写代码即可完成部署,并可通过AppFlow轻松集成到钉钉、企业微信等渠道。具体步骤包括选择适合的机器资源、配置安全组、创建企业微信应用及连接流,最后完成API接收消息配置和测试应用。整个过程简单快捷,帮助用户快速搭建专属AI服务。
1497 7
一键部署开源DeepSeek并集成到企业微信
|
7月前
|
人工智能 自然语言处理 机器人
一键部署开源DeepSeek并集成到钉钉
DeepSeek发布了两款先进AI模型V3和R1,分别适用于对话AI、内容生成及推理任务。由于官方API流量限制,阿里云推出了私有化部署方案,无需编写代码即可完成部署,并通过计算巢AppFlow集成到钉钉等渠道。用户可独享资源,避免服务不可用问题。部署步骤包括选择机器资源、配置安全组、创建应用与连接流,最终发布应用版本,实现稳定高效的AI服务。
600 4
一键部署开源DeepSeek并集成到钉钉