基于Bert文本分类进行行业识别

简介: 基于Bert文本分类进行行业识别

行业识别——基于Bert


项目介绍


数据集:


本项目使用的是THUCNews的一个子集,每条数据都是从新闻中抽取的标题,属于标题(短文本)分类。


文本长度在20到30之间。一共10个类别,每类2万条。数据以字为单位输入模型。


类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。

数据集 数据量
训练集 18万
验证集 1万
测试集 1万

数据迭代器:


在进行训练的时候,读取数据有两种方式。


一种是提前把数据预处理好,保存为文件,训练的时候读取文件进行训练。


另一种是构建数据迭代器,预处理和训练同时进行。


优点:当数据量大的时候,一次只会加载1个batch的数据到显存中,有效防止了显存溢出。


项目结构:


│ predict.py 预测代码


│ run.py 总入口


│ train_eval.py 训练、验证、测试代码


│ utils.py 数据预处理



├─bert_pretrain


│ bert_config.json  超参数配置文件


│ pytorch_model.bin 预训练参数文件


│ vocab.txt 词表文件



├─models


│ bert.py 模型定义及超参数定义



└─THUCNews


├─data


│ class.txt 类别


│ dev.txt 验证集


│ test.txt 测试集


│ train.txt 验证集



└─saved_dict


bert.ckpt 训练模型保存


总入口:

parser = argparse.ArgumentParser(description="chinese text classification")
parser.add_argument('--model',type=str,required=True,help="choose model")
args = parser.parse_args()
if __name__ == "__main__":
    dataset = 'THUCNews' #数据集
    model_name = args.model #模型名字
    x = import_module('models.' + model_name) #根据模型名字,获取models包下的文件
    config = x.Config(dataset) #模型配置类
    #设置随机种子,np,cpu,gpu,固定卷积层算法
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)
    torch.backends.cudnn.deterministic = True
    stat_time = time.time()
    print("Loading data...")
    #数据预处理
    train_data,dev_data,test_data = build_dataset(config)
    #构建训练集、验证集、测试集迭代器
    train_iter = build_iterator(train_data,config)
    dev_iter = build_iterator(dev_data,config)
    test_iter = build_iterator(test_data,config)
    time_dif = get_time_dif(stat_time)
    print("Time usage:",time_dif)
    #构建模型对象,to_device
    model = x.Model(config).to(config.device)
    train(config,model,train_iter,dev_iter,test_iter)

模型搭建和配置


配置类: config

class Config(object):
    def  __init__(self,dataset):
        self.model_name = 'bert'
        #训练集、验证集、测试集
        self.train_path = dataset + 'data/train.txt'
        self.dev_path = dataset + 'data/dev.txt'
        self.test_path = dataset + 'data/test.txt'
        #类别
        self.class_list = [x.strip() for x in open(dataset + 'data/class.txt').readlines()]
        #模型保存位置
        self.save_path = dataset + 'saved_dict' + self.model_name + '.ckpt'
        #设置训练使用cpu、gpu
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        #设置xx个batch没有改变则提前结束
        self.require_improvement = 1000
        #类别数目
        self.num_classes = len(self.class_list)
        #迭代次数
        self.epoches = 3
        #设置batch_size
        self.batch_size = 128
        #设置句子长度
        self.pad_size = 32
        #设置学习率
        self.learning_rate = 5e-5
        #预训练模型相关文件:1.模型文件.bin 2.配置文件.json 3.词表文件vocab.txt
        self.bert_path = './bert_pretrain'
        #序列划分工具
        self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
        #隐藏层数量
        self.hidden_size = 768

模型搭建:model

class model(nn.Module):
    def __init__(self,config):
        super(Module,self).__init__
        #加载模型
        self.bert = BertModel.from_pretrained(config.bert_path)
        #微调
        for param in self.bert.parameters():
            param.requires_grad = True #训练时进行梯度更新
        #输出,自定义全连接层
        self.fc = nn.Linear(config.hidden_size,config.num_classes)
    def forward(self,x):
        context = x[0]
        mask = x[2]
        _,pooled = self.bert(context,mask,output_all_encoded_layers=False)#是否将bert中每层(12)都输出,false只输出最后一层(128,768)
        out = self.fc(pooled)
        return out

数据预处理:


数据预处理

PAD, CLS = '[PAD]', '[CLS]'  #pad:占位符,input长度相同   #cls:放在句子首位,用于分类任务
def build_dataset(config):
    def load_dataset(path,pad_size=32):  #根据pad_size进行补全或者截断
        contents = []
        with open(path,'r',encoding="utf-8") as f:
            for line in tqdm(f):
                lin = line.strip()#去除首尾空格和换行
                if not lin:
                    continue
                content, label = lin.split("\t")#根据tab键进行分割
                token = config.tokenizer.tokenize(content) #分字,bert内置的
                token = [CLS] + token #头部加入
                seq_len = len(token)
                mask = []  #区分填充部分和非填充部分
                token_ids = config.tokenize.convert_tokens_to_ids(token) #基于词表文件,将token转换为索引
                #长截短补
                if pad_size:
                    if len(token) < pad_size:
                        mask = [1] * len(token) + [0] * (pad_size - len(token))
                        token_ids += [0]*(pad_size - len(token))
                    else:
                        mask = [1] * pad_size
                        token_ids = token_ids[:pad_size]
                        seq_len = pad_size
                    contents.append(token_ids,int(label),seq_len,mask)
        return contents
    train = load_dataset(config.train_path,config.pad_size)
    dev = load_dataset(config.dev_path,config.pad_size)
    test = load_dataset(config.test_path,config.pad_size)
    return train, dev,test

数据迭代器构建

class DatasetIterater(object):
    def __init__(self, batches, batch_size, device):
        self.batch_size = batch_size
        self.batches = batches
        self.n_batches = len(batches)//batch_size
        self.residue = False
        if len(batches) % self.n_batches != 0: #不是整数batch
            self.residue = True
        self.device = device
        self.index = 0
    def  _to_tensor(self, datas):#将索引,标签,长度,mask转换为tensor类型
        x = torch.LongTensor(_[0] for _ in datas).to(self.device)
        y = torch.LongTensor(_[1] for _ in datas).to(self.device)
        seq_len = torch.LongTensor(_[2] for _ in datas).to(self.device)
        mask = torch.LongTensor(_[3] for _ in datas).to(self.device)
        return (x,seq_len,mask),y
    def __next__(self):
        if self.residue and self.index == self.n_batches:
            batches = self.batches[self.index*self.index:len(self.batches)]
            self.index += 1
            batches = self._to_tensor(batches)
            return batches
        elif self.index>self.n_batches:
            self.index = 0
            raise StopIteration
        else:
            batches = self.batch_size[self.index*self.batch_size:(self.index+1)*self.batch_size]
            self.index += 1
            batches = self._to_tensor(batches)
            return batches
    def __iter__(self):
        return self
    def __len__(self):
        if self.residue:
            return self.n_batches + 1
        else:
            return self.n_batches
def build_iterator(dataset, config):
    iter = DatasetIterater(dataset,config.batch_size,config.device)
    return iter

构建训练流程


训练

def train(config,model,train_iter,dev_iter,test_iter):
    start_time =time.time()
    #开启训练模式
    model.train()
    #参数
    param_optimizer = list(model.named_parameters()) 
    #无需更新的参数
    no_decay = ['bias','LayerNorm.bias','LayerNorm.weight']
    #设置哪些参数需要更新,哪些不需要
    optimizer_grouped_parameters = [
        {'params':[p for n,p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay':0.01},
        {'params':[p for n,p in param_optimizer if any(nd in n for nd in no_decay)],'weight_decay':0.0}
    ]
    #优化器搭建
    optimizer = BertAdam(optimizer_grouped_parameters,
                        lr=config.learning_rate,
                        warmup=0.05,
                        t_total=len(train_iter)*config.num_epochs)
    #记录总batch
    total_batch = 0
    #记录验证集的损失值
    dev_best_loss = float('inf')
    #记录上次改变的batch数
    last_improve = 0
    #训练结束标识
    flag = False
    model.train()
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch+1,config.num_epochs))
        for i,(trains,labels) in enumerate(train_iter):
            #前向传播,获取输出
            outputs = model(trains)
            #梯度置零,否则会梯度累加
            model.zero_grad()
            #交叉熵损失
            loss = F.cross_entropy(outputs,labels)
            #计算梯度
            loss.backward()
            #反向传播更新参数
            optimizer.step()
            #每一百个batch进行输出结果
            if total_batch % 100 == 0:
                #数据迁移到cpu上进行预测
                true = labels.data.cpu()
                predict = torch.max(outputs.data,1)[1].cpu()
                #分类指标的文本报告:1.精确率 2.召回率 3.F1 score
                train_acc = metrics.accuracy_score(true,predict)
                #验证集准确率和损失
                dev_acc,dev_loss = evaluate(config,model,dev_iter)
                #损失值降低,保存模型
                if dev_loss < dev_best_loss:
                    dev_best_loss =dev_loss
                    torch.save(model.state_dict(),config.save_path)
                    improve = '*'
                    last_improve = total_batch
                else:
                    improve = ''
                time_dif = get_time_dif(start_time)
                msg = "Iter: {0:>6}, Train loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}"
                print(msg.format(total_batch,loss.item(),train_acc,dev_loss,dev_acc,time_dif,improve))
                model.train()
            total_batch += 1
            #早停策略
            if total_batch - last_improve > config.require_improvement:
                print("Early stopping")
                flag = True
                break
        if flag:
            break
    test(config,model,test_iter)

验证

def evaluate(config,model,data_iter,test=False):
    model.eval()
    loss_tatal = 0
    predict_tatal = np.array([],dtype=int)
    label_tatal = np.array([],dtype=int)
    with  torch.no_grad:
        for texts,labels in data_iter:
            output = model(texts)
            loss = F.cross_entropy(output,labels)
            loss_tatal += loss
            labels = labels.data.cpu().numpy()
            predict = torch.max(output.data,1)[1].cpu().numpy()
            label_tatal = np.append(label_tatal,labels)
            predict_tatal = np.append(predict_tatal,predict)
    acc = metrics.accuracy_score(label_tatal,predict_tatal)
    if test:
        report = metrics.classification_report(predict_tatal,label_tatal,target_names=config.class_list,digits=4)
        confution = metrics.confusion_matrix(predict_tatal,label_tatal)
        return acc,loss/len(data_iter),report,confution
    return acc,loss/len(data_iter)

测试

def test(model,config,test_iter):
    model.load_state_dict(torch.load(config.save_path))
    model.eval()
    start_time = time.time()
    test_acc,test_loss,test_report,test_confution = evaluate(config,model,test_iter,test=True)
    msg = "Test loss:{0:>5.2},Test acc:{1:>6.2%}"
    print(msg.format(test_acc,test_loss))
    print("test_report")
    print(test_report)
    print("confution")
    print(test_confution)
    time_dif =get_time_dif(start_time)
    print("use time",time_dif)

预测

import torch
from importlib import import_module
import os
key = {
    0: '金融',
    1: '房产',
    2: '股票',
    3: '教育',
    4: '科技',
    5: '社会',
    6: '政治',
    7: '体育',
    8: '游戏',
    9: '娱乐'
}
cru = os.path.dirname(__file__)
path = os.path.join(cru,'THUCNews')
model_name = 'bert'
x = import_module('bert_demo.models.' + model_name)
config = x.Config(path)
model = x.Model(config).to("cpu")
model.load_state_dict(torch.load(config.save_path, map_location='cpu'))
def build_predict_text(text):
    token = config.tokenizer.tokenize(text)
    token = ['[CLS]'] + token
    seq_len = len(token)
    mask = []
    token_ids = config.tokenizer.convert_tokens_to_ids(token)
    pad_size = config.pad_size
    if pad_size:
        if len(token) < pad_size:
            mask = [1] * len(token_ids) + ([0] * (pad_size - len(token)))
            token_ids += ([0] * (pad_size - len(token)))
        else:
            mask = [1] * pad_size
            token_ids = token_ids[:pad_size]
            seq_len = pad_size
    ids = torch.LongTensor([token_ids])
    seq_len = torch.LongTensor([seq_len])
    mask = torch.LongTensor([mask])
    return ids, seq_len, mask
def predict(text):
    data = build_predict_text(text)
    with torch.no_grad():
        outputs = model(data)
        num = torch.argmax(outputs)
    return key[int(num)]
if __name__ == '__main__':
    while True:
        print(predict("福建省政务云平台基础设施运维服务项25555年招标公告"))
目录
相关文章
|
数据采集 人工智能 自然语言处理
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统
|
机器学习/深度学习 数据采集 自然语言处理
【Deep Learning A情感文本分类实战】2023 Pytorch+Bert、Roberta+TextCNN、BiLstm、Lstm等实现IMDB情感文本分类完整项目(项目已开源)
亮点:代码开源+结构清晰+准确率高+保姆级解析 🍊本项目使用Pytorch框架,使用上游语言模型+下游网络模型的结构实现IMDB情感分析 🍊语言模型可选择Bert、Roberta 🍊神经网络模型可选择BiLstm、LSTM、TextCNN、Rnn、Gru、Fnn共6种 🍊语言模型和网络模型扩展性较好,方便读者自己对模型进行修改
598 0
|
机器学习/深度学习
【文本分类】基于预训练语言模型的BERT-CNN多层级专利分类研究
【文本分类】基于预训练语言模型的BERT-CNN多层级专利分类研究
448 0
【文本分类】基于预训练语言模型的BERT-CNN多层级专利分类研究
|
自然语言处理
使用bert+lstm+crf做实体识别经验总结
使用bert+lstm+crf做实体识别经验总结
185 0
|
存储 数据采集 自然语言处理
【BERT-多标签文本分类实战】之四——数据集预处理
【BERT-多标签文本分类实战】之四——数据集预处理
812 1
【BERT-多标签文本分类实战】之四——数据集预处理
|
机器学习/深度学习 XML 人工智能
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型(五)
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型
474 0
|
机器学习/深度学习 自然语言处理 数据可视化
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型(四)
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型
299 0
|
机器学习/深度学习 自然语言处理 算法
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型(三)
ELMo、GPT、BERT、X-Transformer…你都掌握了吗?一文总结文本分类必备经典模型(三)
404 0
|
机器学习/深度学习 存储
【BERT-多标签文本分类实战】之六——数据加载与模型代码
【BERT-多标签文本分类实战】之六——数据加载与模型代码
416 0
【BERT-多标签文本分类实战】之六——数据加载与模型代码
|
自然语言处理 PyTorch TensorFlow
【BERT-多标签文本分类实战】之五——BERT模型库的挑选与Transformers
【BERT-多标签文本分类实战】之五——BERT模型库的挑选与Transformers
1058 0
【BERT-多标签文本分类实战】之五——BERT模型库的挑选与Transformers