《网络安全0-100》计算机蠕虫特点

简介: 《网络安全0-100》计算机蠕虫特点

计算机蠕虫具有以下几个显著特点:

自我复制:

蠕虫能够自动复制自身,并将复制品传播到其他计算机上。这种自我复制的能力使得蠕虫在短时间内可以迅速扩散到大量主机,形成蠕虫爆发。


独立传播:

与计算机病毒需要依赖宿主文件传播不同,蠕虫可以通过计算机网络自主传播,无需依附于其他文件或程序。


利用漏洞:

蠕虫通常会利用计算机系统°中的漏洞来入侵主机。一旦成功入侵,它们会尝试在目标计算机上复制自身,并继续寻找新的目标。


危害性:

蠕虫可以导致网络拥堵、服务停止或数据丢失等严重后果。某些蠕虫还可以利用感染主机的资源进行分布式拒绝服务攻击(DDoS),对特定目标发动网络攻击。


工作原理:


 

感染主机:

蠕虫通过利用计算机系统中的漏洞或弱密码等方式入侵主机。一旦成功入侵,蠕虫会在感染的主机上运行并开始寻找其他潜在目标。


自我复制:

蠕虫利用网络连接和传输协议,寻找其他易受感染的主机。一旦找到目标,蠕虫会将自身的拷贝传输到目标主机上,实现自我复制。


隐藏和持久化:

为了逃避被检测和清除,蠕虫会使用各种技术来隐藏自身的存在。它们可能会修改系统文件、创建隐藏文件夹或使用加密手段,以避免被发现。此外,蠕虫还会利用自动启动机制,使自身在系统启动时自动运行,以实现持久化感染。


传播机制:

蠕虫利用计算机网络进行传播,通常使用一些网络服务或协议来感染其他主机。它们可以通过扫描网络上的IP地址范围、发送恶意电子邮件、利用即时通信程序或社交媒体等途径,寻找新的目标主机并传播自身。


执行恶意操作:

蠕虫可能会在感染的主机上执行各种恶意操作。这些操作可以包括窃取敏感信息、破坏系统文件、创建僵尸网络、发起分布式拒绝服务攻击等。蠕虫的具体行为取决于其设计者的意图。


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
93 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
103 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
91 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
25 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
55 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
82 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
4月前
|
安全 网络协议 网络安全
计算机网络安全隔离之网闸、光闸
计算机网络安全隔离之网闸、光闸
|
4月前
|
网络协议 网络安全
使用NetAssist网络调试助手在单台计算机上配置TCP服务器和客户端
使用NetAssist网络调试助手在单台计算机上配置TCP服务器和客户端
265 0
|
6月前
|
存储 人工智能 应用服务中间件
Web应用是一种通过互联网浏览器和网络技术在互联网上执行任务的计算机程序
【5月更文挑战第30天】Web应用是一种通过互联网浏览器和网络技术在互联网上执行任务的计算机程序
77 2