《网络安全0-100》计算机蠕虫特点

简介: 《网络安全0-100》计算机蠕虫特点

计算机蠕虫具有以下几个显著特点:

自我复制:

蠕虫能够自动复制自身,并将复制品传播到其他计算机上。这种自我复制的能力使得蠕虫在短时间内可以迅速扩散到大量主机,形成蠕虫爆发。


独立传播:

与计算机病毒需要依赖宿主文件传播不同,蠕虫可以通过计算机网络自主传播,无需依附于其他文件或程序。


利用漏洞:

蠕虫通常会利用计算机系统°中的漏洞来入侵主机。一旦成功入侵,它们会尝试在目标计算机上复制自身,并继续寻找新的目标。


危害性:

蠕虫可以导致网络拥堵、服务停止或数据丢失等严重后果。某些蠕虫还可以利用感染主机的资源进行分布式拒绝服务攻击(DDoS),对特定目标发动网络攻击。


工作原理:


 

感染主机:

蠕虫通过利用计算机系统中的漏洞或弱密码等方式入侵主机。一旦成功入侵,蠕虫会在感染的主机上运行并开始寻找其他潜在目标。


自我复制:

蠕虫利用网络连接和传输协议,寻找其他易受感染的主机。一旦找到目标,蠕虫会将自身的拷贝传输到目标主机上,实现自我复制。


隐藏和持久化:

为了逃避被检测和清除,蠕虫会使用各种技术来隐藏自身的存在。它们可能会修改系统文件、创建隐藏文件夹或使用加密手段,以避免被发现。此外,蠕虫还会利用自动启动机制,使自身在系统启动时自动运行,以实现持久化感染。


传播机制:

蠕虫利用计算机网络进行传播,通常使用一些网络服务或协议来感染其他主机。它们可以通过扫描网络上的IP地址范围、发送恶意电子邮件、利用即时通信程序或社交媒体等途径,寻找新的目标主机并传播自身。


执行恶意操作:

蠕虫可能会在感染的主机上执行各种恶意操作。这些操作可以包括窃取敏感信息、破坏系统文件、创建僵尸网络、发起分布式拒绝服务攻击等。蠕虫的具体行为取决于其设计者的意图。


目录
相关文章
|
4月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
121 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1天前
|
监控 安全 网络协议
计算机端口:网络通信的桥梁
计算机端口是网络通信的逻辑通道,支持数据传输和服务识别。本文介绍端口定义、分类(知名、注册、动态端口)、作用及管理方法,涵盖常用知名端口如HTTP(80)、HTTPS(443)等,并强调端口安全配置的重要性,帮助读者全面理解这一关键组件。
19 5
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
151 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
3月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
81 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
124 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
45 0
|
4月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
74 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
5月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
103 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
6月前
|
安全 网络协议 网络安全
计算机网络安全隔离之网闸、光闸
计算机网络安全隔离之网闸、光闸
|
6月前
|
网络协议 网络安全
使用NetAssist网络调试助手在单台计算机上配置TCP服务器和客户端
使用NetAssist网络调试助手在单台计算机上配置TCP服务器和客户端
328 0

热门文章

最新文章