如何利用波段组合解决同物异谱和异物同谱现象?

简介: 如何利用波段组合解决同物异谱和异物同谱现象?

01 知识点拓展

学习波段组合前,需要了解植物等地物的反射光谱曲线、TM的波段、波段组合等相关知识点。

1.1 植被的光谱曲线


1.2 TM传感器的几个波段及作用

1、TM1为0.45~0.52微米为蓝波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;


2、TM2为0.52~0.60微米为绿波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征;


3、TM3为0.63~0.69微米为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;


4、TM4为0.76~0.90微米,为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等;


5、TM5为1.55~1.75微米,短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,信息量大,应用率较高。


6、TM6为10.40~12.50微米,为热红外波段,该波段对地物热量辐射敏感。


7、TM7为2.08~2.35微米,为中红外波段,是专为地质调查追加的波段;


1.3 几个波段组合的诠释

TM3、2、1波段组合:均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。这种RGB组合模拟出一副自然色的图象,有时用于海岸线的研究和烟柱的探测。


TM4、3、2波段组合:标准假彩色合成,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。


TM7、4、1波段组合:其图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚


02 实操

2.1 加载的TM影像展示

2.1.1 加载的TM影像的各个波段

2.1.2 加载的影像

(真彩色合成,波段组合3、2、1)

2.2 出现同物异谱、异物同谱现象

可能给的例子并不是很明显,但是暂时只能找到这样子的了,专门去找这两种现象太费时费力了。

2.3 修改波段组合

将波段组合3、2、1(真彩色)修改为4、3、2(标准假彩色)。

左下图是4、3、2波段组合的影像,右下图是3、2、1波段组合的影像。

2.4 其它

进行了其它波段的组合,这里组合了波段7、4、1,可以发现信息确实非常丰富

如果有问题,欢迎一起探讨。

目录
相关文章
ENVI Classic:如何进行图像融合(HSV变换/Brovey变换/PC变换)?
ENVI Classic:如何进行图像融合(HSV变换/Brovey变换/PC变换)?
3615 0
|
4月前
|
机器学习/深度学习 自然语言处理 数据可视化
22_注意力机制详解:从基础到2025年最新进展
在深度学习的发展历程中,注意力机制(Attention Mechanism)扮演着越来越重要的角色,特别是在自然语言处理(NLP)、计算机视觉(CV)和语音识别等领域。注意力机制的核心思想是模拟人类视觉系统的聚焦能力,让模型能够在处理复杂数据时,选择性地关注输入的不同部分,从而提高模型的性能和可解释性。
|
9月前
|
人工智能 运维 监控
HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践
本书《HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践》深入探讨了鸿蒙系统的运维管理。从架构特点到实际操作,涵盖分布式能力、性能优化、安全维护及故障排查。内容包括设备管理、系统监控、安全管理等核心任务,提供常见问题解决方案与工具推荐。面对未来超级终端和AI赋能的挑战,运维人员需不断学习,以充分发挥鸿蒙的分布式优势,为用户带来流畅体验。
765 8
|
11月前
|
JSON JavaScript 前端开发
shpfile转GeoJSON;控制shp转GeoJSON的精度;如何获取GeoJSON;GeoJSON是什么有什么用;GeoJSON结构详解(带数据示例)
在使用Openlayers、leaflet、mapbox等地图控件的时候,GeoJSON几乎是不可避免打交道的数据类型,如果您想要从事gis行业相关的开发工作,本篇文章应该能为您带来一些帮助。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
1215 0
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers入门指南:从零开始理解Transformer模型
【10月更文挑战第29天】作为一名机器学习爱好者,我深知在自然语言处理(NLP)领域,Transformer模型的重要性。自从2017年Google的研究团队提出Transformer以来,它迅速成为NLP领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
13257 1
|
数据采集 人工智能 算法
资深博导:我以为数据预处理是常识,直到遇到自己的学生
**摘要:** 本文介绍如何使用Python对近红外光谱土壤数据进行预处理,包括MSC(多元散射校正)、SNV(标准正规化变换)、光谱微分、基线校正和去趋势。通过代码示例展示了预处理步骤,以及每种方法前后的光谱对比。预处理旨在减少噪音、消除散射效应、基线漂移和趋势,提高数据质量和可比性,以利于后续的分析和建模。每部分都配有图表,显示了处理前后的光谱变化。
884 0
资深博导:我以为数据预处理是常识,直到遇到自己的学生
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
22910 0
|
编解码 定位技术
航摄比例尺、成图比例尺、地面分辨率与航摄设计用图比例尺
航摄比例尺、成图比例尺、地面分辨率与航摄设计用图比例尺
874 0
|
机器学习/深度学习 算法 数据挖掘
【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?
【5月更文挑战第14天】【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?