Python|贪心算法解最大子序和

简介: Python|贪心算法解最大子序和

1 题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],

输出: 6

解释: 连续子数组[4,-1,2,1] 的和最大,为 6。


2 思路描述

第一时间想到的当然是暴力解决,基本思路就是遍历一遍,用两个变量,一个记录最大的和,一个记录当前的和。后面发现可以用贪心算法来解比较简单其基本思路是正在访问的节点值+此节点之前的最大值如果大于当前节点,则更新最大值为和,否则更新最大值为当前节点。


3 暴力解决的代码

nums=[-2,1,-3,4,-1,2,1,-5,4]
tmp = nums[0]
max_ = tmp
n = len(nums)
for i in range(1,n):
            # 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值
    if tmp + nums[i]>nums[i]:
        max_ = max(max_, tmp+nums[i])
        tmp = tmp + nums[i]
    else:
            #tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列,
            # 并记录此时的最大值
        max_ = max(max_, tmp, tmp+nums[i],  nums[i])
        tmp = nums[i]
print(max_)

 


4 贪心算法的代码

nums=[-2,1,-3,4,-1,2,1,-5,4]

lenth = len(nums)

         cur_sum=max_sum = nums[0]

         for i in range(1,lenth):

            cur_sum = max(cur_sum+nums[i],  nums[i])

            max_sum = max(cur_sum, max_sum)

print(max_sum)


5 总结

贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。



目录
相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
2月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
140 5
|
3月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
201 26
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
206 0
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
249 0
|
3月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
352 4
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
517 4
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
266 3
|
3月前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
192 4
机器学习/深度学习 算法 自动驾驶
626 0

推荐镜像

更多