一文搞懂SPI通信协议

简介: SPI是串行外设接口(Serial Peripheral Interface)的缩写,是美国摩托罗拉公司(Motorola)最先推出的一种同步串行传输规范,也是一种单片机外设芯片串行扩展接口,是一种高速、全双工、同步通信总线,所以可以在同一时间发送和接收数据,SPI没有定义速度限制,通常能达到甚至超过10M/bps。

目录


1、简介


2、通信原理


3、通信特性


3.1、设备选择


3.2、设备时钟


3.2.1、时钟速率


3.2.2、时钟极性


3.2.3、时钟相位


3.3、四种模式


4、多从机模式


5、SPI优缺点


1、简介

SPI是串行外设接口(Serial Peripheral Interface)的缩写,是美国摩托罗拉公司(Motorola)最先推出的一种同步串行传输规范,也是一种单片机外设芯片串行扩展接口,是一种高速、全双工、同步通信总线,所以可以在同一时间发送和接收数据,SPI没有定义速度限制,通常能达到甚至超过10M/bps。


SPI有主、从两种模式,通常由一个主模块和一个或多个从模块组成(SPI不支持多主机),主模块选择一个从模块进行同步通信,从而完成数据的交换。提供时钟的为主设备(Master),接收时钟的设备为从设备(Slave),SPI接口的读写操作,都是由主设备发起,当存在多个从设备时,通过各自的片选信号进行管理。


SPI通信原理很简单,需要至少4根线,单向传输时3根线,它们是MISO(主设备数据输入)、MOSI(主设备数据输出)、SCLK(时钟)和CS/SS(片选):


MISO( Master Input Slave Output):主设备数据输入,从设备数据输出;

MOSI(Master Output Slave Input):主设备数据输出,从设备数据输入;

SCLK(Serial Clock):时钟信号,由主设备产生;

CS/SS(Chip Select/Slave Select):从设备使能信号,由主设备控制,一主多从时,CS/SS是从芯片是否被主芯片选中的控制信号,只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。

6c16b72b4ca04cb389bac848116f8428.png

一主设备一从设备模式


b620a0a2412e4c3792e56a251e760d83.png

一主设备多从设备模式


2、通信原理

SPI主设备和从设备都有一个串行移位寄存器,主设备通过向它的SPI串行寄存器写入一个字节来发起一次传输。

e40c0ec78953486e82fac4fa404f049d.png



SPI数据通信的流程可以分为以下几步:


1、主设备发起信号,将CS/SS拉低,启动通信。


2、主设备通过发送时钟信号,来告诉从设备进行写数据或者读数据操作(采集时机可能是时钟信号的上升沿(从低到高)或下降沿(从高到低),因为SPI有四种模式,后面会讲到),它将立即读取数据线上的信号,这样就得到了一位数据(1bit)。


3、主机(Master)将要发送的数据写到发送数据缓存区(Menory),缓存区经过移位寄存器(缓存长度不一定,看单片机配置),串行移位寄存器通过MOSI信号线将字节一位一位的移出去传送给从机,同时MISO接口接收到的数据经过移位寄存器一位一位的移到接收缓存区。


4、从机(Slave)也将自己的串行移位寄存器(缓存长度不一定,看单片机配置)中的内容通过MISO信号线返回给主机。同时通过MOSI信号线接收主机发送的数据,这样,两个移位寄存器中的内容就被交换。


例如,下图示例中简单模拟SPI通信流程,主机拉低NSS片选信号,启动通信,并且产生时钟信号,上升沿触发边沿信号,主机在MOSI线路一位一位发送数据0X53,在MISO线路一位一位接收数据0X46,如下图所示:


eedf04a26b46483da6d845b3a818512f.png


这里有一点需要着重说明一下:SPI只有主模式和从模式之分,没有读和写的说法,外设的写操作和读操作是同步完成的。若只进行写操作,主机只需忽略接收到的字节(虚拟数据);反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机的传输。也就是说,你发一个数据必然会收到一个数据;你要收一个数据必须也要先发一个数据。


3、通信特性


3.1、设备选择

SPI是单主设备(Single Master)通信协议,只有一支主设备能发起通信,当SPI主设备想读/写从设备时,它首先拉低从设备对应的SS线(SS是低电平有效)。接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,主设备把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”。如下图所示:

a767f5a8f44345838cb27ea7ccc3ce02.png



3.2、设备时钟

SPI时钟特点主要包括:时钟速率、时钟极性和时钟相位三方面。


3.2.1、时钟速率

SPI总线上的主设备必须在通信开始时候配置并生成相应的时钟信号。从理论上讲,只要实际可行,时钟速率就可以是你想要的任何速率,当然这个速率受限于每个系统能提供多大的系统时钟频率,以及最大的SPI传输速率。


3.2.2、时钟极性

根据硬件制造商的命名规则不同,时钟极性通常写为CKP或CPOL。时钟极性和相位共同决定读取数据的方式,比如信号上升沿读取数据还是信号下降沿读取数据。


CKP可以配置为1或0。这意味着你可以根据需要将时钟的默认状态(IDLE)设置为高或低。极性反转可以通过简单的逻辑逆变器实现。你必须参考设备的数据手册才能正确设置CKP和CKE。


CKP = 0:时钟空闲IDLE为低电平 0;

CKP = 1:时钟空闲IDLE为高电平1。

3.2.3、时钟相位

根据硬件制造商的不同,时钟相位通常写为CKE或CPHA。顾名思义,时钟相位/边沿,也就是采集数据时是在时钟信号的具体相位或者边沿;


CKE = 0:在时钟信号SCK的第一个跳变沿采样;

CKE = 1:在时钟信号SCK的第二个跳变沿采样。

3.3、四种模式

根据SPI的时钟极性和时钟相位特性可以设置4种不同的SPI通信操作模式,它们的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(就是时钟信号无效时是高还是低),详情如下所示:


Mode0:CKP=0,CKE =0:当空闲态时,SCK处于低电平,数据采样是在第1个边沿,也就是SCK由低电平到高电平的跳变,所以数据采样是在上升沿(准备数据),(发送数据)数据发送是在下降沿。

Mode1:CKP=0,CKE=1:当空闲态时,SCK处于低电平,数据发送是在第2个边沿,也就是SCK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。

Mode2:CKP=1,CKE=0:当空闲态时,SCK处于高电平,数据采集是在第1个边沿,也就是SCK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。

Mode3:CKP=1,CKE=1:当空闲态时,SCK处于高电平,数据发送是在第2个边沿,也就是SCK由高电平到低电平的跳变,所以数据采集是在上升沿,数据发送是在下降沿。

20201103011946638.png

黑线为采样数据的时刻,蓝线为SCK时钟信号


举个例子,下图是SPI Mode0读/写时序,可以看出SCK空闲状态为低电平,主机数据在第一个跳变沿被从机采样,数据输出同理。


99abbf68f67d4d2f81ea11f33057f8b5.png


下图是SPI Mode3读/写时序,SCK空闲状态为高电平,主机数据在第二个跳变沿被从机采样,数据输出同理。


803592f691cd4196b869e181204950db.png



4、多从机模式

有两种方法可以将多个从设备连接到主设备:多片选和菊花链。


通常,每个从机都需要一条单独的SS线。如果要和特定的从机进行通讯,可以将相应的NSS信号线拉低,并保持其他SS信号线的状态为高电平;如果同时将两个SS信号线拉低,则可能会出现乱码,因为从机可能都试图在同一条MISO线上传输数据,最终导致接收数据乱码。


b5c18d98920c4e4db32066ed1aead178.png


菊花链的最大缺点是信号串行传输,一旦数据链路中的某设备发生故障的时候,它下面优先级较低的设备就不可能得到服务了。另一方面,距离主机越远的从机,获得服务的优先级越低,所以需要安排好从机的优先级,并且设置总线检测器,如果某个从机超时,则对该从机进行短路,防止单个从机损坏造成整个链路崩溃的情况。


0f18cc37030a4f06a78f00ee22ed0b69.png


5、SPI优缺点

优点

无起始位和停止位,因此数据位可以连续传输而不会被中断;

没有像I2C这样复杂的从设备寻址系统;

数据传输速率比I2C更高(几乎快两倍);

分离的MISO和MOSI信号线,因此可以同时发送和接收数据;

极其灵活的数据传输,不限于8位,它可以是任意大小的字;

非常简单的硬件结构。从站不需要唯一地址(与I2C不同)。从机使用主机时钟,不需要精密时钟振荡器/晶振(与UART不同)。不需要收发器(与CAN不同)。

缺点

使用四根信号线(I2C和UART使用两根信号线);

无法确认是否已成功接收数据(I2C拥有此功能);

没有任何形式的错误检查,如UART中的奇偶校验位;

只允许一个主设备;

没有硬件从机应答信号(主机可能在不知情的情况下无处发送);

没有定义硬件级别的错误检查协议;

与RS-232和CAN总线相比,只能支持非常短的距离;


相关文章
|
芯片 异构计算 内存技术
关于SPI协议,看这一篇文章就够了!
关于SPI协议,看这一篇文章就够了!
625 0
关于SPI协议,看这一篇文章就够了!
|
3天前
|
传感器
SPI协议详解
SPI协议详解
|
2月前
|
存储 芯片
|
2月前
|
存储 缓存 芯片
|
2月前
透彻理解 UART 通信的基本方法
透彻理解 UART 通信的基本方法
43 0
|
11月前
|
存储 SoC
深入理解AMBA总线(十一)AXI协议导论
深入理解AMBA总线(十一)AXI协议导论
842 0
|
12月前
|
内存技术
一文教你彻底学会SPI协议
一文教你彻底学会SPI协议
535 0
|
算法 网络协议 数据处理
一文搞懂UART通信协议
UART(Universal Asynchronous Receiver/Transmitter,通用异步收发器)是一种双向、串行、异步的通信总线,仅用一根数据接收线和一根数据发送线就能实现全双工通信。典型的串口通信使用3根线完成,分别是:发送线(TX)、接收线(RX)和地线(GND),通信时必须将双方的TX和RX交叉连接并且GND相连才可正常通信