1) 要求达到的目标为装入的背包的总价值最大,并且重量不超出
2) 要求装入的物品不能重复
动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。
动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
动态规划可以通过填表的方式来逐步推进,得到最优解。
背包问题的代码实现思路:
算法的主要思想,利用动态规划来解决。每次遍历到的第 i 个物品,根据 w[i]和 val[i]来确定是否需要将该物品放入背包中。
即对于给定的 n 个物品,设 val[i]、w[i]分别为第 i 个物品的价值和重量,m 为背包的容量。再令 v[i][j]
表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值。则我们有下面的结果:
(1) v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是 0
(2) 当 w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于当前背包的容量时,就直接使用上一个
单元格的装入策略
(3) 当 j>=w[i]时: v[i][j]=max{v[i-1][j], val[i]+v[i-1][j-w[i]]}
// 当 准备加入的新增的商品的容量小于等于当前背包的容量,
// 装入的方式:
v[i-1][j]: 就是上一个单元格的装入的最大值
v[i] : 表示当前商品的价值
v[i-1][j-w[i]] : 装入 i-1 商品,到剩余空间 j-w[i]的最大值
当 j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} :9
代码实现:
public class KnapsackProblem { public static void main(String[] args) { int[] w = { 1, 4, 3 };// 物品的重量 int[] val = { 1500, 3000, 2000 };// 物品的价值 int m = 4;// 背包的容量 int n = val.length;// 物品的个数 // 创建二维数组 // v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值 int[][] v = new int[n + 1][m + 1]; // 为了记录放入商品的情况,我们定一个二维数组 int[][] path = new int[n + 1][m + 1]; // 初始化第一行和第一列 for (int i = 0; i < v.length; i++) { v[i][0] = 0;// 将第一列设置为0 } for (int i = 0; i < v[0].length; i++) { v[0][i] = 0;// 将第一行设置为0 } // 根据前面得到的公式来动态规划处理 for (int i = 1; i < v.length; i++) {// 不处理第一行 for (int j = 1; j < v[0].length; j++) {// 不处理第一列 // 套用总结公式 if (w[i - 1] > j) { v[i][j] = v[i - 1][j]; } else { // v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]); // 为了记录商品存放到背包的情况,我们不能简单的使用上面的公式,需要使用if-else来体现 if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) { v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]]; // 把当前情况记录到path path[i][j] = 1; } else { v[i][j] = v[i - 1][j]; } } } } // 输出一下v 看看目前的情况 for (int i = 0; i < v.length; i++) { for (int j = 0; j < v[i].length; j++) { System.out.print(v[i][j] + " "); } System.out.println(); } System.out.println("*****************************************"); // 输出最后我们放入哪些商品 // 遍历path,这样输出会把所有的放入情况都得到,其实我们只需要最后的放入 // for (int i = 0; i < path.length; i++) { // for (int j = 0; j < path[i].length; j++) { // if(path[i][j] == 1) { // System.out.printf("第%d个商品放入到背包\n", i); // } // } // } int i = path.length - 1;// 行的最大小标 int j = path[0].length - 1;// 列的最大下标 while (i > 0 && j > 0) {// 从path的最后开始找 if (path[i][j] == 1) { System.out.printf("第%d个商品放入到背包\n", i); j -= w[i - 1]; } i--; } } }