带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(8)

简介: 带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(8)

带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(7) https://developer.aliyun.com/article/1248031?groupCode=taobaotech



结构/精度


图优化与模型量化


结构冗余与精度冗余的压制一般需要离线工具辅助,MNN 对应提供了图优化、模型压缩工具,在端上则提供了部分架构的低精度的计算支持。


1.图优化:基于一系列预先写好的模板,去除模型中的冗余计算,比如 Convolution 与 BatchNormal / Scale 的合并,Dropout 去除等。图优化能在特定场景下带来相当大的计算收益,但相当依赖根据先验知识编写的模板,相比于模型本身的复杂度而言注定是稀疏的,无法完全去除结构冗余


2.模型量化:通过把模型中的常量压缩成 FP16 或 Int8 ,可以降低模型大小,进一步地可以压缩模型中的变量(featuremap),亦即为模型中每层的输入输出寻找FP16/Int8 到 FP32 的映射关系,这样可以在模型运行时用低精度进行计算加速


3.低精度计算:MNN 在ARMv7a/ARMv8上实现了int8,BF16 的加速,分别约有30% / 10% 加速效果。ARMv8.2 架构上用 fp16 vec ,sdot ,分别有 100% 和 200 % 的加速效果。在支持VNNI指令集的x64架构下则有 200% 的性能提升。


image.png


稀疏计算加速


为了适配SIMD优化,MNN 通过权重矩阵稀疏化设计,训练合适的稀疏化分布,使权重矩阵呈现出“半结构化”稀疏的特性,而不是在行、列方向完全随机化稀疏,避免了向量vector用不满、数据复用低的弊端。如下图所示的BCSR(Block Compressed Sparse Row ) 格式:


image.png

图中白色代表的零元素,实际计算可以跳过,减少计算开销。



带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(9) https://developer.aliyun.com/article/1248029?groupCode=taobaotech

相关文章
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
29_序列标注技术详解:从HMM到深度学习
序列标注(Sequence Labeling)是自然语言处理(NLP)中的一项基础任务,其目标是为序列中的每个元素分配一个标签。在NLP领域,序列标注技术广泛应用于分词、词性标注、命名实体识别、情感分析等任务。
|
3月前
|
机器学习/深度学习 存储 人工智能
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文系统解析深度学习模型压缩三大核心技术:剪枝、量化与知识蒸馏,详解如何实现模型缩小16倍、推理加速4倍。涵盖技术原理、工程实践与组合策略,助力AI模型高效部署至边缘设备。
871 1
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1020 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2370 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
1331 33
|
11月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
370 24
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
537 14
|
12月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
436 6
|
11月前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
487 1
|
11月前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。

热门文章

最新文章