【Java高阶数据结构】图补充-拓扑排序

简介: Java高阶数据结构 & 图补充-拓扑排序1. 什么是拓扑排序 讲得很好哦!

Java高阶数据结构 & 图补充-拓扑排序

1. 什么是拓扑排序


图片来源:简单、快速地带你了解图论以及拓扑排序!_哔哩哔哩_bilibili


   讲得很好哦!


这里我以羊了个羊小游戏这款砖块消除类小游戏为例:



有一个规则:



   当上层砖块覆盖下层砖块的时候,下层砖块不可以被选中移动(暗)

   上层砖块移走后,下层砖块才能被移动(亮)


则可以用如下图表示这种逻辑结构:



   A->B,代表A覆盖B

   即一种无环不带权有向图


   带回路的话,那么这个顶点就相当于自己覆盖了自己,不合理

   无向的话,一条边则是双向的,同1不合理

   箭头代表覆盖关系,权值不重要



那么我们给每个砖块一个layer值:



要求:


   layer值大的砖块显示上,覆盖layer值小的砖块

   即A->B,layer(A) > layer(B)


   在开发过程中需要这个layer,至于用处是什么,不做解释,这里这不是重点。


       至于这款游戏的原理,感兴趣的可以去网上找找资料研究一下


我们只需要找到一个序列,保证上方的覆盖者要在被覆盖者前方,再为其安排一个递减的序列



那么问题是:如何生成这个序列呢?


   这个排序,就叫做 “拓扑排序”


类似的,如果你需要学习一系列的课程,那么一些知识一定需要另一些知识作为基础~



   而显然的,符合实际的是:这种序列不应该唯一

       学习路径肯定不一定单一呀~

   事实上也如此~

       一个图的拓扑排序很有可能有多解


2. 拓扑排序算法思想-卡恩算法


   本文章用邻接表的存储结果!


基础知识传送门:Java高阶数据结构 & 图 & 图的表示与遍历_s:103的博客-CSDN博客


例子:



前面提到,如果成环则没有拓扑序列,那么我们也可以通过能否拓扑排序,来判断一个图是否带环


   这也算是拓扑排序的一个额外得到功能吧


这里只讲解一种简单直接的算法,卡恩算法


   重点在于每个顶点的入度


步骤:


   遍历一遍邻接表,计算所有顶点的入度

   挑选一个入度为0的顶点,并输出

   刚才挑中的顶以及其指向的顶点的入度都减1

       -1的入度代表此顶点被删除

   挑选一个入度为0的顶点,并输出

   刚才挑中的顶以及其指向的顶点的入度都减1

   重复这个操作,直到所有顶点都被删除(入度都为-1)

       如果最终是因为没有入度为0的顶点而不是全部顶点都被删除而停止的循环,则说明存在环


疑问:


1. 你很快会意识到,如果出现多个入度为0的顶点,应该怎么办?


答:先挑选谁都无所谓,因为这两个入度为0的顶点,是一种并列的关系,不会相互影响。即使他们有可能分支下去会有公共顶点,这也不会导致“乱了规则”的现象,因为“汇聚的第一个公共顶点”入度至少为2,只有其入度为0的时候才能被选中


   也就是说,只有如果先选中的入度为0的顶点输出后,诞生新的入度为0的顶点,一定也与原来入度为0的顶点也是并列

   这也是序列不唯一的原因~


2. 为什么入度为0的顶点先被选中?


答:这很显然,入度为0,代表没人指向它


   也就是说,它没被覆盖,而只覆盖别人!

   万物之源


算法复杂度分析:


       每个顶点和每条边都刚好被访问一次


   V因为顶点数,E为边数


       则时间复杂度为O(V + E)


动图演示:


3. 拓扑排序代码实现


   我这边直接延用之前实现邻接表的代码(自制API)

   获取:Java高阶数据结构 & 图 & 图的表示与遍历_s:103的博客-CSDN博客


以下代码就不做过多解释了,完全依照刚才的算法思想~


3.1 遍历链表计算入度


//获取所有顶点的入度
public int[] getDevs() {
    int n = arrayV.length;
    int[] arr = new int[n];
    for (int i = 0; i < n; i++) {
        Node cur = edgeList.get(i);
        while(cur != null) {
            arr[cur.dest]++;
            cur = cur.next;
        }
    }
    return arr;
}




3.2 挑选一个入度为0的顶点


   你也可以结合isvVsted数组(标记数组)和堆去存储,节约时间

   这里用最简单的遍历法

public int getFirstZero(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        if(arr[i] == 0) {
            return i;
        }
    }
    return -1;
}



3.3 输出顶点


   这里我将顶点输出到队列里了

public void outputV(int index, int[] arr, Queue<Character> queue) {
    queue.offer(arrayV[index]);
    arr[index]--;
    Node cur = edgeList.get(index);
    while(cur != null) {
        arr[cur.dest]--;
        cur = cur.next;
    }
}


 


3.4 判断循环结束是否为全-1


public boolean isContainCir(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        if(arr[i] != -1) {
            return true;
        }
    }
    return false;
}


 


3.4 kahn方法


public boolean kahn(Queue<Character> queue) {
    int[] arr = getDevs();
    int index = getFirstZero(arr);
    while(index != -1) {
        outputV(index, arr, queue);
        index = getFirstZero(arr);
    }
    return isContainCir(arr);
}



3.5 测试


public static void main(String[] args) {
    //定义与构建图
    char[] chars = "012345678".toCharArray();
    GraphByList graph = new GraphByList(chars.length, true);
    graph.initArrayV(chars);
    graph.addEdge('0', '1', 1);
    graph.addEdge('0', '2', 1);
    graph.addEdge('1', '3', 1);
    graph.addEdge('2', '3', 1);
    graph.addEdge('2', '4', 1);
    graph.addEdge('4', '3', 1);
    graph.addEdge('6', '0', 1);
    graph.addEdge('7', '0', 1);
    graph.addEdge('7', '6', 1);
    graph.addEdge('8', '5', 1);
    //定义队列
    Queue<Character> queue = new LinkedList<>();
    boolean flag = graph.kahn(queue);
    System.out.println(flag ? "带环" : "不带环");
    System.out.println(queue);
}




目录
相关文章
|
23天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
38 1
|
25天前
|
存储 Java
告别混乱!用Java Map优雅管理你的数据结构
【10月更文挑战第17天】在软件开发中,随着项目复杂度增加,数据结构的组织和管理至关重要。Java中的Map接口提供了一种优雅的解决方案,帮助我们高效、清晰地管理数据。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,有效提升了代码质量和维护性。
79 2
|
25天前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
57 2
|
8天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
29 6
|
14天前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
22天前
|
存储 算法 Java
Java 中常用的数据结构
【10月更文挑战第20天】这些数据结构在 Java 编程中都有着广泛的应用,掌握它们的特点和用法对于提高编程能力和解决实际问题非常重要。
24 6
|
23天前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
26 1
|
2月前
|
Java
java数据结构,双向链表的实现
文章介绍了双向链表的实现,包括数据结构定义、插入和删除操作的代码实现,以及双向链表的其他操作方法,并提供了完整的Java代码实现。
java数据结构,双向链表的实现
|
1月前
|
存储 安全 Java
【用Java学习数据结构系列】探索顺序表和链表的无尽秘密(附带练习唔)pro
【用Java学习数据结构系列】探索顺序表和链表的无尽秘密(附带练习唔)pro
23 3
|
6月前
|
存储 Java
Java数据结构:链表
Java数据结构:链表
45 2